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pN sigma term and chiral-odd twist-3 distribution function e„x… of the nucleon
in the chiral quark soliton model

Y. Ohnishi* and M. Wakamatsu†

Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan
~Received 3 December 2003; published 1 June 2004!

The isosinglet combination of the chiral-odd twist-3 distribution functioneu(x)1ed(x) of the nucleon has
the outstanding properties that its first moment is proportional to the well-knownpN sigma term and that it
contains ad-function singularity atx50. These two features are inseparably connected in that the above sum
rule would be violated if there is no such singularity ineu(x)1ed(x). Very recently, we found that the physical
origin of thisd-function singularity can be traced back to the long-range quark-quark correlation of scalar type,
which signals the spontaneous chiral symmetry breaking of the QCD vacuum. The main purpose of the present
paper is to give complete theoretical predictions for the chiral-odd twist-3 distribution functionea(x) of each
flavor a on the basis of the chiral quark soliton model, without recourse to the derivative-expansion-type
approximation. These theoretical predictions are then compared with the empirical information extracted from
the CLAS data of the semi-inclusive DIS processes by assuming the Collins mechanism only. A good agree-
ment with the CLAS data is indicative of a sizable violation of thepN sigma-term sum rule or, equivalently,
the existence of ad-function singularity ineu(x)1ed(x).

DOI: 10.1103/PhysRevD.69.114002 PACS number~s!: 12.39.Fe, 12.38.Lg, 12.39.Ki, 13.40.Em
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I. INTRODUCTION

It is a widely accepted common belief now that the no
perturbative dynamics of QCD~chiral dynamics! is an indis-
pensable element for understanding high-energy deep in
tic scattering observables. Undoubtedly, the reconfirma
of this natural fact is strongly based on to the two remarka
experimental discoveries in this field@1–3#. They are the
unexpectedly small quark spin fraction of the nucleon
vealed by the European Muon Collaboration~EMC! mea-
surement@1,2# and the light-flavor sea-quark asymmet
confirmed by the New Muon Collaboration~NMC! measure-
ment @3#. The most successful theoretical studies of par
distribution functions have been carried out within t
framework of the chiral quark soliton model~CQSM!
@4–15#, which is an effective model of baryons maximal
incorporating the spontaneous chiral symmetry breaking
the QCD vacuum. In fact, we claim that it is so far the on
effective model of baryons which is able to explain the abo
two remarkable findings simultaneously within a single th
oretical framework@16–19#.

Very recently, we became aware of another novel exam
in which nonperturbative QCD dynamics plays an unpr
edented role in the physics of parton distribution functions
concerns the possible existence of a delta-function singu
ity at the Bjorken variablex50 in the chiral-odd twist-3
distribution functione(x) of the nucleon@20,21#. This distri-
bution function itself, together with its first moment sum ru
giving the familiarpN sigma term, has been known for
long time@22#. In spite of several interesting theoretical fe
tures, however, this distribution function has been though
as an academic object of study, since, because of its ch
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odd nature, it does not appear in the cross section formul
inclusive deep-inelastic scattering~DIS!. The situation
changed drastically, however, since the CLAS Collaborat
was able to get the first experimental information on t
interesting quantity through measurement of the azimu
asymmetry ALU in the electroproduction of pions from
deeply inelastic scattering of longitudinally polarized ele
trons off unpolarized protons@23–25#.

Some years ago, within the framework of perturbati
QCD, Burkardt and Koike noticed that the first moment su
rule ~or the pN sigma-term sum rule! for e(x) holds only
when e(x) has ad-function-type singularity at the Bjorken
variablex50 @26#. Unfortunately, the physical origin of this
singular term is not very clear in this perturbative analys
Very recently, two independent proofs were given to the f
that the physical origin of thisd-function singularity can be
traced back to the nonvanishing vacuum quark conden
which signals the spontaneous chiral symmetry breaking
the QCD vacuum@20,21#. An interesting question is whethe
we can verify experimentally the existence of thisd-function
singularity ine(x). Unfortunately, the pointx50 is experi-
mentally inaccessible. This means that, if there really ex
such ad(x)-type singularity ine(x), the experimental mea
surement would rather confirm violation of thispN sigma-
term sum rule. Nonetheless, sincee(x) in the regionxÞ0
can in principle be measured, theorists are challenged to
plain its behavior.

The first theoretical study ofe(x) was done by using the
MIT bag model@27#. ~See also@28#.! However, this estimate
based on the bag model cannot be taken as a realistic on
the following reasons. First, its prediction for the magnitu
of the pN sigma term is far from reliable. Second, mo
seriously, it cannot reproduce thed-function singularity of
e(x). Both these features~they are not actually unrelated!
are easily anticipated, since the MIT bag model is essenti
a relativistic quark model withNc(53) valence quark de-
©2004 The American Physical Society02-1
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grees of freedom only, and the reproduction of the nonz
vacuum quark condensate is beyond the range of applic
ity of this model. The first realistic investigation ofe(x) was
carried out by Efremovet al. on the basis of the chiral quar
soliton model but within the ‘‘valence’’ quark only approx
mations@29,30#. More recently, the present authors and S
weitzer independently carried out more careful analysis
the contribution of the Dirac sea quarks on the basis of
gradient-expansion-type approximation and confirmed
the isosinglet combination ofe(x) certainly contains a
d-function-type singularity@20,21#. After some analysis of
higher-derivative terms of the expansion, however, S
weitzer retreated to the assumption that the contribution
the Dirac sea quarks is saturated by thisd(x) term alone. As
admitted by himself, however, whether this last assump
is justified or not is far from trivial@20#. To confirm it, one
has to carry out an exact numerical calculation within
model without recourse to the gradient-expansion-type
proximation. Furthermore, to compare the predictions of
model with the experimental data of the CLAS Collabo
tion, one must knowea(x) of each flavora. To this end, only
knowledge of the isoscalar combinationeu(x)1ed(x) is not
enough. We need another independent combination: i.e.
isovector distributioneu(x)2ed(x). Within the framework
of the CQSM, this latter distribution survives at the next-
leading order in 1/Nc expansion and it was left untouched
@20#.

In view of the above-mentioned circumstances, we th
it important to carry out an exact model calculation with
the CQSM for both of the isoscalar and isovector combi
tions of the chiral-odd twist-3 distribution functione(x). We
also think it useful to analyze the first- and second-mom
sum rule for eu(x)1ed(x) and eu(x)2eu(x) within the
CQSM in light of the corresponding sum rule expected in
general framework of perturbative QCD. The predictions
the model foreu(x) anded(x) ~as well as the correspondin
distributions for antiquarks! are then used as initial distribu
tions given at the model energy scale around 600 MeV~or
Q2.0.30 GeV2), and they are evolved to higherQ2 for the
sake of comparison with the phenomenological informat
obtained by using the CLAS measurement.

The paper is organized as follows. In Sec. II, after a br
introduction of the basic idea of the CQSM, the theoreti
expressions foreu(x)1ed(x) and eu(x)2ed(x) are given.
The fundamental moment sum rules for these distributi
are also discussed here in some detail. Section III is dev
to a discussion of the numerical results. Finally, in Sec.
we summarize what we have found.

II. e„x… IN THE CHIRAL QUARK SOLITON MODEL

The chiral-odd twist-3 quark distributionea(x) of flavor a
inside a nucleon with 4-momentumP, averaged over its spin
is defined by

ea~x!5P1E
2`

` dz2

2p
eixP1z2

3^Nuca
†~0!g0ca~z!uN&uz150,z'50 , ~1!
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whereca are quark fields. Similarly, the corresponding an
quark distribution is defined as

eā~x!5P1E
2`

` dz2

2p
eixP1z2

3^Nuca
c†~0!g0ca

c~z!uN&uz150,z'50 , ~2!

with cc being the charge-conjugate field ofc. Here we use
the standard light-cone coordinates

z65
z06z3

A2
, P65

P06P3

A2
. ~3!

The variable x denotes the Bjorken variable,x52q2/
(2P•q), with q being the 4-momentum transfer to th
nucleon. Taking account of the charge-conjugation prope
of the relevant quark bilinear operator, one can formally e
tend the domain of quark distribution functions from the i
terval 0<x<1 to 21<x<1, such that

eā~x!5ea~2x! ~0<x<1!, ~4!

which dictates that the distribution function with negativex
should be interpreted as antiquark one.

Although the above definitions of the quark and antiqua
distribution functions are frame independent, it is conveni
to perform the actual calculation in the nucleon rest frame
this frame, we haveP15MN /A2, and the distribution func-
tion is reduced to

ea~x!5MNE
2`

` dz0

2p
eixMNz0

3^Nuca
†~0!g0ca~z!uN&uz352z0 ,z'50 . ~5!

Throughout the paper, we will confine ourselves to two fl
vor case ofu andd quarks, and neglect strangeness degr
of freedom in the nucleon. Consequently, we have two in
pendent distributions: i.e., the isosinglet distributio
e(T50)(x)[eu(x)1ed(x) and the isovector onee(T51)(x)
[eu(x)2ed(x). In the case ofe(T50)(x), we simply sum up
Eq. ~5! over the flavor components. On the other hand,
e(T51)(x), we have to sum up the representation after ins
ing t3 matrix in Eq.~5!.

For obtaining quark distribution functions, we must ge
erally evaluate nucleon matrix elements of bilocal and bil
ear quark operators containing two space-time coordin
with light-cone separation. The starting point of our theor
ical analysis is the following path integral representation
the matrix elements of a bilocal and bilinear quark opera
between the nucleon states with definite momentumP:
2-2
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^N~P!uc†~0!g0c~z!uN~P!&

5
1

ZE d3xd3ye2 iP•xeiP•yE DUE DcDc†JNS T

2
,xD

3c†~0!g0c~z!JN
† S 2

T

2
,yD

3expF i E d4xLG , ~6!

where

L5c̄@ i ]”2MUg5~x!#c, ~7!

with

Ug5~x!5exp@ ig5t•p~x!/ f p# ~8!

being the basic Lagrangian of the CQSM with two flavo
The quantity

JN~x!5
1

Nc!
ea1•••aNcG

JJ3 ,TT3

$ f 1••• f Nc
%
ca1f 1

~x!•••caNc
f Nc

~x!

~9!

is a composite operator carrying quantum numbersJJ3 ,TT3
~spin, isospin! of the baryon, wherea i are the color indices

while G
JJ3 ,TT3

$ f 1••• f Nc
%

is a symmetric matrix in spin flavor indice

f i . We start with a stationary pion field configuration
hedgehog shape:

p~x!5 f p r̂F~r !. ~10!

Next we carry out the path integral overp(x) in a saddle
point approximation by taking care of two zero-ener
modes: i.e., the ‘‘translational zero modes’’ and ‘‘rotation
zero modes.’’ Under the assumption of ‘‘slow rotation’’ a
compared with intrinsic quark motion, the answers can
obtained in a perturbative series inV, which can also be
regarded as a 1/Nc expansion. Up to first order in the collec
tive rotational velocityV, the only surviving contribution to
e(T50)(x) arises at theO(V0) term of this expansion, sinc
the O(V1) term vanishes identically due to the hedgeh
symmetry. On the other hand, the first nonvanishing con
bution to e(T51)(x) arises at theO(V1), since the leading
O(V0) contribution vanishes due to the hedgehog symme
Then, between the magnitude of the above two distributio
one may expect the following large-Nc relation:

ueu~x!1ed~x!u;Ncueu~x!2ed~x!u. ~11!

A. Isosinglet distribution e„TÄ0…
„x…

The isosinglet combination of the chiral-odd twist-3 u
polarized distribution is given by
11400
.

l
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e(T50)~x![eu~x!1ed~x!

5MNE
2`

` dz0

2p
eixMNz0

3^Nuc̄~0!c~z!uN&uz352z0 ,z'50 . ~12!

Following the general formalism developed in@4,5,9#, the
isosinglet distribution in the CQSM is given in the followin
form:

e(T50)~x!52NcMN(
n.0

^nug0d~xMN2 p̂32En!un&

~13!

5NcMN(
n<0

^nug0d~xMN2 p̂32En!un&,

~14!

where un& and En are the eigenstates and the associa
eigenenergies of the static Dirac Hamiltonian

H52 i a•¹1bMeig5t• r̂F~r !, ~15!

with the hedgehog background. Here, the summation(n<0
in Eq. ~14! is meant to be taken over the valence-quark
bital ~it is the lowest-energy eigenstate that emerges from
positive-energy Dirac continuum! plus all the negative-
energy Dirac-sea orbitals. On the other hand, the summa
(n.0 in Eq. ~13! is meant to be taken over all the positiv
energy Dirac continuum excluding the discrete valence
bital. We recall that the CQSM is defined with some app
priate regularization. In fact, without regularizatio
e(T50)(x) is quadratically divergent, and no practical mea
ing can be given to either of Eqs.~13! and ~14!. The ideal
regularization scheme for our purpose is the Pauli-Villa
subtraction scheme, since it preserves several fundame
conservation laws of field theory@4,5#. Furthermore, it is
also expected to preserve the equivalence of the two way
computing the quantity in question, by using Eqs.~13! and
~14!. In the present study, we use the double-subtrac
Pauli-Villars scheme as introduced in@31#, sincee(T50)(x)
diverges like the vacuum quark condensate. In this sche
the distributione(T50)(x) is replaced with a regularized on
defined as

e(T50)~x![e(T50)~x!M2(
i 51

2

ci S L i

M De(T50)~x!L i. ~16!

Here e(x)L i is obtained frome(x)M by replacing the mass
parameterM by L i . It was shown in@31# that, if the param-
etersc1 ,c2 ,L1 , andL2 are chosen to satisfy the two cond
tions

12(
i 51

2

ci S L i

M D 2

50, ~17!
2-3
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12(
i 51

2

ci S L i

M D 4

50, ~18!

the quadratic as well as the logarithmic divergences in
vacuum quark condensate are completely eliminated.

Actually, we are interested in the nucleon observab
measured in reference to the physical vacuum, so
e(T50)(x) should be replaced by

e(T50)~x!→e(T50)~x![eU
(T50)~x!2eU51

(T50)~x!. ~19!

Here the vacuum subtraction termeU51
(T50)(x) is obtained

from eU
(T50)(x) by settingU51 or F(r )50 and by exclud-

ing the sum over the discrete valence level. We point
that, as a result of the energy-momentum conservation
bedded in the factord(xMN2 p̂32En), the vacuum subtrac
tion terms are required only forx,0 in the occupied form
~14! and forx.0 in the nonoccupied form~13!. This means
that the vacuum subtraction terms need not be consid
whene(T50)(x) is evaluated in the following way—i.e., if i
is evaluated by using the occupied form forx.0, while us-
ing the nonoccupied form forx,0.

Momentum sum rules of e„TÄ0…
„x…

The most important information of the distribution fun
tions is generally contained in their first few moments
lowest orders. This is also the case for the distribut
e(T50)(x). In a recent paper, Efremov and Schweitzer
viewed some of the important sum rules for the chiral-o
twist-3 distribution functions in an enlightening way@32#.
Their argument starts with the general definition of the d
tribution with flavora as

ea~x!5
1

2MN
E dl

2p
eilx^Nuc̄a~0!@0,ln#ca~ln!uN&,

~20!

where@0,ln# denotes the gauge link. By using an opera
identity following from the QCD equation of motion,ea(x)
is shown to be decomposed in a gauge-invariant way into
three pieces

ea~x!5esing
a ~x!1etw3

a ~x!1emass
a ~x!. ~21!

Hereesing
a (x) denotes a singular term given by

esing
a ~x!5d~x!^Nuc̄acauN&. ~22!

On the other hand,etw3
a (x) is a genuine twist-3 part ofea(x)

that contains information on quark-gluon-quark correlatio
Finally, emass

a (x) denotes the term arising from the nonze
current quark mass. It is a somewhat peculiar function
fined through its Mellin moments as@33–36#

E
21

1

xn21emass
a ~x!dx5dn.1

m0

MN
E

21

1

xn22f 1
a~x!dx,

~23!
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with f 1
a(x) being the twist-2 unpolarized distribution wit

flavor a. The presence of the factordn.1 here dictates tha
the first moment ofemass

a (x) vanish:

E
21

1

emass
a ~x!dx50. ~24!

It is also known@33–36# that the first two basic Mellin mo-
ments ofetw3

a (x) vanish—i.e.,

E
21

1

xn21etw3
a ~x!dx50 for n51,2. ~25!

Putting the above-mentioned properties altogether, the fi
moment sum rule for the isoscalar combination
ea(x)—i.e., e(T50)(x)—takes the form.

E
21

1

e(T50)~x!dx5
(pN

m0
, ~26!

which is nothing but thepN sigma-term sum rule. Note tha
this sum rule is saturated by the first term of Eq.~21! alone.
On the other hand, the second Mellin moment ofe(T50)(x) is
given by

E
21

1

xe(T50)~x!dx5
m0

MN
Nc , ~27!

whereNc is the number of color, which coincides with th
number of quarks contained in a baryon-number-1 system
i.e., Nc53. We point out that this second Mellin moment
e(T50) vanishes in the chiral limit ofm050.

Next, we turn to the discussion of the moment sum rule
the CQSM. Integrating Eq.~14! over x, the first moment of
e(T50)(x) is given as

E
21

1

e(T50)~x!dx5Nc(
n<0

^nug0un&. ~28!

Since the right-hand side~RHS! of this equation is nothing
but the scalar charges̄ of the nucleon within the CQSM, the
sigma-term sum rule immediately follows:

E
21

1

e(T50)~x!dx5s̄5
(pN

m0
. ~29!

The way of this sum rule being satisfied is far more delic
in the CQSM than in the above QCD-motivated analysis.
shown by our previous study, although the model certai
predicts thed(x)-type singularity ine(T50)(x), this term
alone does not saturate thepN sigma-term sum rule. The
model also predicts a nontrivial structure ofe(T50)(x) at x
Þ0, which may contribute to the first-moment sum rule. W
shall discuss this point in more detail in the next section.

Turning to the second moment, it is easy to show fro
Eq. ~14! that
2-4
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E
21

1

xe(T50)~x!dx5
Nc

MN
(
n<0

^nug0~ p̂31En!un&. ~30!

Owing to the hedgehog symmetry of the soliton, the te
containingg0p̂3 vanishes, and we are left with

E
21

1

xe(T50)~x!dx5
Nc

MN
(
n<0

En^nug0un&. ~31!

Following @20#, it is convenient to rewrite the RHS of th
above equation in the following manner. First, notice t
identity

En^nug0un&5
1

2
^nu$Ĥ,g0%un&5m01M ^nu

1

2
~U1U†!un&.

~32!

Here we have tentatively restored the current quark m
term in the model HamiltonianH, just for the sake of expla
nation here only; i.e., we have used here

H52 i a•¹1bMeig5t• r̂F(r )1m0 . ~33!

Then, the second moment sum rule in the CQSM takes
form

E
21

1

xe(T50)~x!dx5
Nc

MN
~m01bM !, ~34!

with

b[ (
n<0

^nu
1

2
~U1U†!un&. ~35!

It is clear now that the RHS of this sum rule does not van
even in the chiral limit ofm050, contrary to the sum rule
derived from the QCD equation-of-motion method. We sh
return to this point in the next section.

B. Isovector distribution e„TÄ1…
„x…

The isovector distribution is defined by

e(T51)~x![eu~x!2ed~x!

5MNE
2`

` dz0

2p
eixMNz0

3^Nuc̄~0!t3c~z!uN&U
z352z0 ,z'50

. ~36!

Within the framework of the CQSM,e(T51)(x) survives only
in the next-to-leading order in the collective angular veloc
V. Following the formalism derived in@9,10#, the final an-
swer is written in the form
11400
ss

e

h

ll

e(T51)~x!52^2T3&pMN

Nc

2I

1

3 (
a51

3

(
m5all ,n.0

^nutaum&

3^mutag0S dn

Em2En
2

1

2MN
dn8D un&

5^2T3&pMN

Nc

2I

1

3 (
a51

3

(
m5all ,n<0

^nutaum&

3^mutag0S dn

Em2En
2

1

2MN
dn8D un&, ~37!

with dn[d(xMN2En2 p̂3) and dn85
]

]x
d(xMN2En2 p̂3).

HereI in the RHS of Eq.~37! is the moment of inertia of the
soliton, given by

I 5
Nc

6 (
a51

3

(
m.0

(
n<0

^nutaum&^mutaun&
Em2En

. ~38!

In Eq. ~37!, ^O&p should be understood as an abbrevia
notation of the matrix element of a collective operatorO
between the~spin-up! proton state—i.e.,

^O&p[E CT5T351/2;J5J351/2* @jA#O@jA#

3CT5T351/2;J5J351/2@jA#djA

5^p,S351/2uOup,S351/2&. ~39!

In the present case, we have^2T3&p51.
We immediately notice that the above expressions are

suitable for the actual numerical calculation. Here, we sh
proceed as in the previous studies@9,10#. First, note that the
term containing thex derivative of thed function in Eq.~37!
can be rewritten as

e2~x!52
d

dx

Nc

4I

1

3 (
a

(
m5all ,n<0

^nutaum&^mutag0dnun&

5
1

4IM N

d

dx
e(T50)~x!. ~40!

Here we have made use of the completeness of the ei
statesun& of the static Dirac HamiltonianH. @We recall that
e2(x) term originates from the nonlocality in time of th
operatorc̄(0)tac(z) in Eq. ~36!.# It should be recognized
that thex derivative of the isosinglet distributione(T50)(x)
appears in the right-hand side. Since we already know
the isosinglet distributione(T50)(x) has thed(x)-type singu-
larity connected with the nonvanishing vacuum expectati
it then follows thate2(x) has the derivative-of-d(x)-type sin-
gularity. However, it is unlikely that the net isovector distr
bution e(T51)(x) has such a singularity, because the QC
vacuum should not violate isospin symmetry so that vacu
quark condensate of isovector type must simply vanish. T
apparent discrepancy can be resolved as follows. We
2-5
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divide the double sum of Eq.~37! into the sum over terms
with Em5En and with EmÞEn . The point is that the sum
with Em5En in e1(x) can be rewritten in a similar form a
the corresponding term ine2(x):

e1~x!5MN

Nc

2I

1

3 (
a

(
m5all ,n<0

(EmÞEn)

1

Em2En
^nutaum&

3^mutag0dnun&1
d

dx

Nc

4I

1

3 (
a

(
m<0,n<0
(Em5En)

^nutaum&

3^mutag0dnun&, ~41!

e2~x!52
d

dx

Nc

4I

1

3 (
a

(
m5all ,n<0

(EmÞEn)

^nutaum&^mutag0dnun&

2
d

dx

Nc

4I

1

3 (
a

(
m<0,n<0
(Em5En)

^nutaum&^mutag0dnun&.

~42!

Now, just as argued in@10,9#, theEm5En contribution in the
double sums ine1(x) ande2(x) precisely cancel each othe
After regrouping the terms in such a way that this cance
tion occurs at the level of analytical expressions, theO(V1)
contribution to the distribution functione(T51)(x)5eu(x)
2ed(x) can finally be written in the following form:

e(T51)~x!5MN

Nc

2I

1

3 (
a

(
m5all ,n<0

(EmÞEn)

^nutaum&

3^mutag0S dn

Em2En
2

1

2MN
dn8D un&. ~43!

The fact is that, in the double sum of Eq.~42!, the singularity
connected with the nonzero vacuum quark condensate co
only from Em5En contribution: i.e., the second term of E
~42!. As mentioned above, after theEm5En contributions in
e1(x) ande2(x) are canceled, these singularities disappea
Eq. ~43!. The final theoretical formula~43! is therefore free
from any singularity which contradicts the symmetries of t
QCD vacuum, and it provides us with a sound basis
numerical calculation.

First moment sum rule of e„TÄ1…
„x…

Here we discuss the first moment sum rule of the isov
tor distribution. Integrating Eq.~36! over x, we obtain

E
21

1

e(T51)~x!dx5E
21

1

@eu~x!2ed~x!#dx5^Nuc̄t3cuN&.

~44!

~Here, c̄t3c should be taken as an abbreviated notation
*c̄(y)t3c(y)d3y, which gives the isovector scalar charg
operator.! An interesting observation is that the first mome
of e(T51)(x) is related to the nonelectromagnetic mass d
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ference of neutron and proton. In fact, the nonelectrom
netic neutron-proton mass difference is thought to be ge
ated by the isospin breaking term in the QCD Hamiltonia

DH5
mu2md

2
~ c̄ucu2c̄dcd!. ~45!

Because of the smallness of all the massesmu ,md ,md2mu
compared with the typical energy scale of hadron phys
we can treatDH as a first-order perturbation, thereby bein
led to the following formula for the nonelectromagnetic ma
difference between neutron and proton:

~Mn2M p!QCD5^nuDHun&2^puDHup&

5~md2mu!^puc̄ucu2c̄dcdup&, ~46!

where use has been made of the isospin symmetry for
unperturbative stateup&,un& ~i.e., the invariance under th
interchangesp↔n and u↔d). Empirically, the neutron-
proton mass difference of QCD origin can be estimated fr
the observed mass difference by taking account of the
rection due to the electromagnetic interactions:

~Mn2M p!QCD5~Mn2M p!expt2~Mn2M p!e.m.. ~47!

Using the values (Mn2M p)expt.1.29 MeV,(Mn2M p)e.m.
.(20.7660.30) MeV @37#, we obtain

~Mn2M p!QCD.~2.0560.30! MeV. ~48!

To extract the first moment ofe(T51)(x) empirically, we
need to know the value ofmd2mu . By using md2mu
.5 MeV, as an order-of-magnitude estimate, we obtain

E
21

1

e(T51)~x!dx5
~Mn2M p!QCD

md2mu
.0.4160.06. ~49!

On the other hand, the theoretical expression for the fi
moment ofe(T51)(x) is obtained from Eq.~43! as

E
21

1

e(T51)~x!dx5
Nc

2I

1

3 (
a

(
n<0

(
m.0

^nutaum&^mutag0un&
Em2En

.

~50!

Here we have used the fact that, since the contributione2(x)
is a total derivative, it does not contribute to the integral
Eq. ~50!. After integration overx, the double sum over level
in Eq. ~50! is naturally restricted to include only transition
from occupied to nonoccupied states. This is reasona
since the operator appearing on the RHS of Eq.~50! is a
local operator, and transitions from occupied to occup
states would violate the Pauli principle. Within the fram
work of the CQSM, we can evaluate the RHS of Eq.~44!—
i.e., the isovector scalar charge of the nucle

^Nuc̄t3cuN&—directly without passing through the distribu
tion function. Since the resultant expression of^Nuc̄t3cuN&
precisely coincides with the RHS of Eq.~50!, we conclude
that the first moment sum rule ofe(T51)(x) is properly sat-
isfied within the model.
2-6
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III. NUMERICAL RESULTS AND DISCUSSION

The numerical method used for evaluatinge(x) in this
paper is essentially the same as the one used for comp
the twist-2 distributions q(x),Dq(x),dq(x) @8,9#. The
eigenenergies and eigenvectors of the static Dirac Ha
tonianH with the hedgehog background are obtained by
agonalizing it with the so-called Kahana-Ripka plane-wa
basis @38#. Following them, the plane-wave states, intr
duced as a set of eigenstates of the free HamiltonianH0
52 i a•¹1bM , are discretized by imposing an appropria
boundary condition for the radial wave functions at the
dius D chosen to be sufficiently larger than the soliton si
The basis is made finite by retaining only those states w
the momentumk satisfying the conditionk,kmax. As a re-
sult of using this discretized momentum basis, the resul
distribution becomes a discontinuous function ofx, due to
the factord(xMn2En2 p̂3). In order to get a continuou
function with a discretized basis, we introduce a smea
distribution function in the variablex as @5#

eg~x![
1

gAp
E

2`

`

e2(x2x8)2/g2
e~x8!dx8, ~51!

with a small but finite value ofg (g!1). The smeared dis
tribution is expected to be continuous when the separa
between the discretized momenta is much smaller than
smearing widthg. Since the physical distribution corre
sponds to the limitg→0, this forces us to employ a ver
large box sizeD to get a continuous distribution function.

This procedure works very well at least for the stand
distributions investigated so far. However, in the numeri
calculation ofe(T50)(x), we have a new problem which w
have not encountered before. Our expectation is that,
d(x)-type singularity really exists ine(T50)(x), the corre-
sponding smeared distribution would have a Gaussian p
centered aroundx50 with width g. The problem here is tha
the distribution function in question may also have a pie
that is nonsingular for all values ofx. One might think that
the contribution of the singular part can be disentangled fr
the total contribution by using the ‘‘unsmearing method’’ d
scribed in@5#. This is not feasible, however, for the followin
reasons. First, although the smearing procedure define
Eq. ~51! preserves the integral value of the distribution, w
have noad hocway of knowing the overall coefficient of th
d(x) term of the distribution. Second, the small-x behavior
of the nonsingular part of the distribution would be hard
know, because it is buried in the very large contribution
the smearedd-function singularity. This point will be dis-
cussed in more detail in the following subsection.

A. Isosinglet distribution e„TÄ0…
„x…

In the numerical calculation, we fix the pion weak dec
constant f p in Eq. ~10! to its physical value—i.e.,f p

593 MeV—so that only one parameter of the model is
dynamical quark massM, which plays the role of the cou
pling constant between the pion and effective quark fie
Through the present analysis, we use the value ofM
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5375 MeV, which is favored from the phenomenology
nucleon low-energy observables. WithM5375 MeV, we
have L1.627 MeV andL2.1589 MeV from the condi-
tions ~17!, ~18!. The static soliton energy obtained with the
parameters is about 1018 MeV. We point out that, althou
the soliton mass emerges about 8% larger than the obse
nucleon massMN , the consistency with the energy
momentum sum rule of the unpolarized distribution fun
tions enforces us to use this value forMN in the following
evaluation of the distribution functions.

We start with showing the numerical equivalence of t
final answers based on the nonoccupied representation
the occupied one. The problem here is the dependence o
cutoff momentumkmax, which is introduced to make finite
the discretized Kahana-Ripka basis set. Since the distribu
e(T50)(x) is ultraviolet finite after the introduction of the
double-subtraction Pauli-Villars regularization, one mig
expect that the answers would be stable as far as one t
kmax much larger than the second Pauli-Villars cutoff ma
L2.1.6 GeV. This is not the case, however. As clarified
@21#, the d-function-type singularity ine(T50)(x) is gener-
ated by the contribution of the infinitely deep Dirac-sea le
els, which are naturally contained in either of the three term
i.e., the main term and the two Pauli-Villars subtracti
terms. This implies that the singularity, which will appear
the smeared distribution as a Gaussian peak aroundx50
with width g, would be reproduced only in the ideal limit o
kmax→`. To achieve this ideal limit, we therefore use a
extrapolation method explained below. For this extrapolat
to be done smoothly, we first introduce an energy cutoff in
the level sums~13! and ~14! of the form

@eu~x!1ed~x!#nonoccupied
R

52NcMN(
n.0

^nug0d~xMN2 p̂32En!un&R~En!,

~52!

@eu~x!1ed~x!#occupied
R

5NcMN(
n<0

^nug0d~xMN2 p̂32En!un&R~En!. ~53!

Here R(En) is a smooth regulator function with an energ
cutoff Emax5Akmax

2 1M2. For this regulator function, we
employ here a Gauusian function

R~En!5exp@2~En /Emax!
2#, ~54!

following Diakonov et al. @5#. We first compute the leve
sums~52! and~53! for several values ofkmax, in the case of
massesM, L1 , andL2 , respectively, and then perform th
Pauli-Villars subtraction, and finally remove the energy c
off by the numerical extrapolation to infinity pointwise inx.
In the present study, we use five data~corresponding to
kmax/M512, 16, 20, 24, and 28! and perform a least-
squares fit of these data by using a fourth-order function
1/kmax.
2-7
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Now we are ready to show in Fig. 1 thekmax dependence
of the Dirac-sea contributions based on the occupied re
sentation for all values ofx. Here we use a value ofg
50.1. This figure shows that the peak positions of
Gaussian-like function obtained with the finite cutoff ener
deviate to the negative-x region from the originx50. This
deviation of the peak position in the smeared distribut
may be understood as follows. First, when one uses the
cupied representation, the vacuum substraction as re
sented by Eq.~19! is necessary only for the regionx,0,
while it is not necessary forx.0, since the vacuum term
identically vanishes forx.0 due to the restriction of the
factor d(xMN2En2 p̂3). Second, we recall the fact that th
singular term ofe(T50)(x) emerges as a delicate cancellati
of two large numbers or infinities—i.e., the difference b
tween the main contribution with hedgehog background
the vacuum subtraction term obtained withU51. These two
facts indicate that the use of the occupied form with so
finite value ofg can reproduce the redistribution of the delt
function strength atx50 in the x,0 region only, but it
cannot do it properly in thex.0 region, as far as the finite
energy cutoff is used. This is the reason why the Gauss
like peak of the smeared distribution is shifted to t
negative-x region. One can, however, confirm the behav
that the position of the Gaussian peak approachesx50 as
the energy cutoff is increased. And, finally, with the extrap
lation method, we obtain a reasonable result which sho
that the peak of the smeared distribution is positioned jus
x50. @In the above analysis, we fix the box size to beDM
520. As a matter of course, to get physically accepta
answers, we must also investigate the dependence of th
swers on the box sizeD. We found that, aboveDM520, the
change of the small-x behavior ofe(T50)(x) as illustrated in
Fig. 1 is almost due to the increase ofkmax, and the answer
is stable against the further increase ofDM above 20.#

After carrying out a similar analysis, this time, with use
the nonoccupied representation, we can now compare
final numerical results for the Dirac-sea contribution o
tained with the two alternative representations. Figure
shows this comparison. A reasonable agreement betwee

FIG. 1. Thekmax dependence of the Dirac-sea contribution
e(T50)(x) based on the occupied representation. The solid cu
represents the extrapolated result.
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two ways of evaluatinge(T50)(x) confirms the equivalence
of the two representations. At the same time, the anal
above establishes the existence of thed-function singularity
in eu(x)1ed(x) on numerical grounds. Some difference b
tween the two curves at the positive- and negative-x tails of
the Gaussian-like distributions would be a spurious one g
erated by the numerical extrapolation method. The contri
tions based on the occupied representation forx,0 and the
nonoccupied representation forx.0 can be obtained afte
cancellation of two large numbers: i.e., the main contribut
and the corresponding vacuum subtraction term. On the o
hand, if one uses the occupied representation forx.0 and
the nonoccupied representation forx,0, one is free from the
spurious contribution due to the cancellation, so that the
trapolated curves at these tail regions have reason
smooth behavior.

Although we were able to confirm the existence of
d(x)-type singularity in the numerical analysis ofe(T50)(x),
we cannot exclude the possibility that thee(T50)(x) may also
contain a regular term which is smooth in all the range ox.
Is it possible to disentangle such a nonsingular term
e(T50)(x) from the total contribution containing the singula
one? One should recognize that it is not so easy for
following reasons. First, the deconvolution method as p
posed by Diakonovet al. does not work because of the ve
delicate nature of the singularity@5#. Second, we have noad
hocway to know the coefficient ofd(x) term in the original
unsmeared distribution. Nevertheless, we found that the
lowing trick works for obtaining the nonsingular distributio
excluding thed(x) term. That is, as repeatedly emphasize
by using the nonoccupied expression forx,0 and the occu-
pied one forx.0, we can avoid the vacuum subtractio
Interestingly, this also works to remove the singular con
bution in the bare distribution, and the correspondi
smeared distribution would not contain the Gaussian p
corresponding to thed(x)-type singularity.@One should re-
member the fact that the vacuum term plays an indispens
role in reproducing thed-function singularity ine(T50)(x).]

Figure 3 shows thekmax dependence of the Dirac-sea co
tributions based on the occupied representation forx.0 and

e
FIG. 2. Comparison of the Dirac-sea contributions toe(T50)(x)

based on the occupied~solid curve! and nonoccupied~dashed
curve! representations.
2-8
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the nonoccupied representation forx,0. One finds that the
large and positive Gaussian peak, the reminiscence of
d-function singularity in the bare distribution, does not a
pear anymore. One can also see that the negative large
tributions of the Dirac sea in the smallx region tend to de-
crease as the cutoff momentumkmax increases. We again
remove the energy cutoff by numerical extrapolation to
finity pointwise in x. We observe some difference from th
previous case, however. Owing to the feature that
d-function singularity is already excluded in the present w
of calculation, thekmax dependence is well reproduced b
the linear function of 1/kmax as illustrated in Fig. 4. After this
extrapolation procedure, the result shows a smooth beha
in the whole region ofx except the regionuxu,0.06 in which
the answer is thought to contain some numerical instab
generated by the extrapolation method. Neglecting the d
in the uxu,0.06 region, we make this extrapolated res
smooth. After deconvoluting the smeared distribution w

FIG. 3. Thekmax dependence of the Dirac-sea contributions
e(T50)(x) based on the occupied representation forx.0 and the
nonoccupied representation forx,0. The solid curve represents th
extrapolated result.

FIG. 4. Thekmax dependence ofesea
(T50)(x) at x50.12 and its

linear extrapolation tokmax→`.
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use of the Fourier and its inverse transforms, we obtain
final prediction for the distributione(T50)(x) within the
framework of the CQSM, the normalization point of whic
may be interpreted as about 600 MeV.

Summarizing our analysis up to this point, the isosing
part of the chiral-odd twist-3 distribution is given as a sum
the valence-quark and Dirac-sea-quark contributions,

e(T50)~x!5eval
(T50)~x!1esea

(T50)~x!, ~55!

where the Dirac-sea contribution consists of the singu
term and the nonsingular~regular! term as

esea
(T50)~x!5Cd~x!1ereg

(T50)~x!. ~56!

Shown in Fig. 5 are the final theoretical predictions f
e(T50)(x) obtained in the above-explained way. The dash
curve here represents the contribution ofNc valence level
quarks, while the dotted curve does the regular part of Dir
sea contribution. The sum of these two contributions
shown by the solid curve.@We recall that thed(x)-type sin-
gular term is not shown in this figure.# One can convince
oneself that the regular part of the Dirac-sea contribut
shows a nontrivial structure in thexÞ0 region.

After performing the numerical integration of the abo
distributions overx, one can obtain the contributions of th
valence quark term and the regular part of the Dirac-sea t
to the first-moment sum rule:

E
21

1

eval
(T50)~x!dx.1.7, ~57!

E
21

1

ereg
(T50)~x!dx.0.18. ~58!

Note that the regular part ofesea
(T50)(x) gives a small but

nonzero contribution to the sum rule. To determine the co

FIG. 5. The final theoretical predictions of the CQSM f
e(T50)(x). The dot-dashed curve represents the contribution ofNc

valence level quarks, the dashed curve the nonsingular part o
Dirac-sea contributions, and the solid curve their sum. T
d-function singularity atx50 in the Dirac-sea-quark part is no
shown in this figure.
2-9
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ficient of the singular term in Eq.~56!, we use the first-
moment sum rule~28! or ~29! for e(T50)(x), which was al-
ready shown to hold within the framework of the CQSM. W
first recall that the RHS of the sum rule~28! or ~29! is the
nucleon scalar charge defined by

s̄5^Nuc̄ucu1c̄dcduN&. ~59!

The point is that this low-energy observable can be ca
lated within the CQSM, without asking for the distributio
function e(T50)(x). It is given as

s̄5s̄val1s̄sea, ~60!

with

s̄val5Nc^0ug0u0&, ~61!

s̄sea5Nc(
n,0

^nug0un&. ~62!

Numerically, we find that

s̄val.1.7, s̄sea.10.1, ~63!

so that

s̄5s̄val1s̄sea.11.8. ~64!

Then, by admitting the validity of the first-moment sum ru
one can extract the coefficient of thed(x) term as follows:

C5s̄sea2E
21

1

ereg
(T50)~x!dx.9.92. ~65!

Our procedure for obtaining the coefficientC is different
from that of Schweitzer@20#. After some consideration base
on the gradient expansion analysis, he assumed that
Dirac-sea contribution toe(T50)(x) is saturated by thed(x)
term with the coefficientSpN /m0 , and simply neglected the
possible existence of the nonsingular contribution. In
treatment, then, the nontrivial shape ofe(T50)(x) at xÞ0
solely comes from the contribution ofNc valence level
quarks. Thus, the total distribution consists of these t
terms as

e(T50)~x!5
SpN

m0
d~x!1eval~x!. ~66!

~Here for simplicity, we ignore the term proportional to th
product ofm0 and the unpolarized distribution function.! In
our opinion, this procedure has a danger of double count
Within the framework of the CQSM, the totalpN sigma
term divided by the current quark massm0 is nothing but the
total scalar charges̄ of the nucleon, which is made up of th
two termss̄val and s̄sea. The x integral of Eq.~66! would
then lead to

E
21

1

e(T50)~x!dx5~ s̄val1s̄sea!1s̄val , ~67!
11400
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which is obviously double counting the valence quark co
tribution to the first-moment sum rule. From a practic
viewpoint, this double counting is not so serious, since
s̄val term turns out to be an order of magnitude smaller th
s̄sea. This dominance of the Dirac-sea contribution to t
nucleon scalar charge is one of the distinguishing feature
the CQSM. One can say that it is connected with the uniq
feature of this model, which is able to describe simul
neously a localized baryonic excitation together with t
nontrivial QCD vacuum structure with nonzero quark co
densate~or nonzero scalar quark density!. In any case, we
emphasize that the CQSM predicts a fairly large sca
charge for the nucleon: i.e.,s̄.11.8. Using the curren
quark mass ofm0.5 MeV as an estimate, this gives

SpN[m0s̄.60 MeV, ~68!

which seems to favor relatively large values obtained from
recent analysis of the pion-nucleon scattering amplitu
@39–43#.

Next we turn to the discussion of the second-moment s
rule. We first point out that thed(x) term in e(T50)(x) does
not contribute to the second moment. In the CQSM, then,
second moment ofe(T50)(x) receives contributions from two
terms in the distribution: i.e., the valence-quark te
eval

(T50)(x) and the regular part of the vacuum polarizati
term ereg

(T50)(x). After performing the numerical integration
we find that

E
21

1

xeval
(T50)~x!dx.0.23, ~69!

E
21

1

xesea
(T50)~x!dx5E

21

1

xereg
(T50)~x!dx.20.05. ~70!

The total second moment is therefore given by

E
21

1

xe(T50)~x!dx.0.2320.05.0.18. ~71!

We recall that, within the CQSM, there is another indepe
dent method for evaluating the second moment. Since we
working in the chiral limit, we rewrite Eq.~34!, by setting
m050, as

E
21

1

xe(T50)~x!dx5Nc

M

MN
b ~72!

or

E
21

1

xeval
(T50)~x!dx5Nc

M

MN
bval , ~73!

E
21

1

xesea
(T50)~x!dx5Nc

M

MN
bsea, ~74!

with
2-10



ri-

din
-
e
re
o
o
a

t o

ru
n

he
In
in
le

c
tr

es
th
n

nc
al
si
as
n
en
a
i

e

ed
n
as
f t

t
ul

o

the

t of
rk
the

ici-

gh-
nd

al
ela-
del
ely

ent
ve

um
o-

r

s the
ve
ion,

sea

pN SIGMA TERM AND CHIRAL-ODD TWIST-3 . . . PHYSICAL REVIEW D 69, 114002 ~2004!
bval5^0u
1

2
~U1U†!u0&, ~75!

bsea5 (
n,0

^nu
1

2
~U1U†!un&. ~76!

These quantitiesbval and bsea can be calculated directly
within the model, without invoking the corresponding dist
bution functions. Numerically, we find that

Nc

M

MN
bval.0.23, ~77!

Nc

M

MN
bsea.20.06. ~78!

These two numbers are consistent with the correspon
numbers in Eqs.~69! and ~70!, obtained through the distri
bution functions. A small discrepancy between the numb
in Eqs.~70! and~78! may be interpreted as giving a measu
of numerical errors introduced by the very delicate interp
lation method for obtaining the vacuum polarization term
e(T50)(x). At any rate, we find that the CQSM predicts
relatively small but nonzero value for the second momen
e(T50)(x). Since we are working in the chiral limit (m0
50), this appears to contradict the corresponding sum
~27! derived on the basis of the QCD equations of motio
which states that the second moment ofe(T50)(x) vanishes
in the chiral limit. Does this discrepancy simply mean t
limitation of the CQSM as an effective theory of QCD?
our opinion, this is not necessarily the case by the follow
reasons. First of all, we point out that moment sum ru
containing quark masses are somewhat delicate, since
masses are generally dependent on the renormalization s
Second, if the QCD vacuum breaks the chiral symme
spontaneously as is generally believed, a quark acquir
dynamical mass of several hundred MeV, which means
massless quarks are nowhere. Naturally, the situation is
so simple because of the color confinement. For insta
according to the picture of the MIT bag model, which re
izes quark confinement by hand, at least the vacuum in
the bag is perturbative and the quarks inside it remains m
less. According to Shuryak@44#, the bag model is based o
the idea that the hadron is a piece of a qualitatively differ
~or ‘‘perturbative’’! phase of the QCD vacuum. The physic
picture of the CQSM for the baryon and the QCD vacuum
fairly different from that of the bag model. According to th
words of Shuryak again, the chiral models~including the
CQSM! assume that the vacuum is only slightly modifi
inside the hadron: the relative orientation of the right- a
left-handed quark fields is somewhat different. This l
statement denotes the fact that, in the basic Lagrangian o
CQSM, the dynamical quark mass parameterM appears as a
product with the chiral fieldUg5(x), which is space-time
dependent. It is also the cause of the fact that the produc
M and b enters the RHS of the second-moment sum r
~34!. This supports Schweitzer’s viewpoint@20# that the
quantity bM can be interpreted as an effective mass
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quarks bound in the soliton background at least in
second-moment sum rule ofe(T50)(x). Numerically, we
have

bM;51 MeV. ~79!

This value is smaller than the one obtained in@20#, since the
contribution of the Dirac-sea quarks neglected in@20# works
to reduce the value ofb.

In any case, the nonzero value of the second momen
e(T50)(x) is not contradictory at least within the framewo
of the CQSM in which massless quarks are nowhere at
model energy scale of about 600 MeV. However, we ant
pate that the dynamical quark massM is generally a scale-
dependent quantity which approaches zero in the hi
energy limit. The naive QCD sum rule for the seco
moment ofe(T50)(x) would be recovered in this limit. To
verify the validity of this idea, what is crucial is experiment
determination of the second-moment sum rule at the r
tively low-energy scale close to the above-mentioned mo
energy scale. This may be in principle possible by invers
evoluting high-energy data to low-energy scale.

B. Isovector distribution e„TÄ1…
„x…

In the case of the isovector distributione(T51)(x), no ul-
traviolet regularization is needed because its first mom
~50! is related to the imaginary part of the Euclidian effecti
meson action in the background soliton field@45# and it is
ultraviolet finite. We have checked that the energy level s
~43! is stable enough against an increase of the cutoff m
mentumkmax, above 12M . The final result for the isovecto
distributione(T51)(x) is shown in Fig. 6.

The dashed curve represents the contribution of theNc
valence level quarks, and the dot-dashed curve represent
contribution of the Dirac-sea quarks, while the solid cur
represents their sum. In contrast to the isosinglet distribut
the Dirac-sea contribution has no singularity atx50 and it is
a smooth function in the whole region ofx. The total contri-
bution is given by the solid curve.

FIG. 6. The theoretical predictions of the CQSM fore(T51)(x).
The dot-dashed curve stands for the contribution ofNc valence
level quarks, the dashed curve the contribution of the Dirac-
quarks, while the solid curves represents their sum.
2-11
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The first moment or thex integral of this total contribution
gives the value

E
21

1

e(T51)~x!dx.0.28, ~80!

which is order of magnitude consistent with the estim
obtained from the analysis of the nonelectromagnetic pro
neutron mass difference. Shown in Fig. 7 are a compar
of our final theoretical predictions fore(T50)(x) and
e(T51)(x). One confirms that the magnitude ofe(T51)(x) is
much smaller than that ofe(T50)(x) in conformity with the
large-Nc relation~11!. Combining these two distributions, w
can now give final theoretical predictions for the chiral-o
twist-3 distribution functionea(x) of each flavora. Shown in
Fig. 8~a! are the distributions for theu quark andū quark,
while Fig. 8~b! gives the distributions for thed quark andd̄
quark.

C. Comparison with empirical information from the CLAS
measurements

Here we make a very preliminary comparison of our th
oretical predictions fore(x) with empirical information ex-
tracted from high-energy semi-inclusive scatterings. Beca
of its chiral-odd nature, the distribution functione(x) does

FIG. 7. The comparison of the theoretical predictions
e(T50)(x) ande(T51)(x) at the model energy scale.

FIG. 8. The theoretical predictions foreu(x), ed(x), eū(x), and

ed̄(x) at the model energy scale.
11400
e
n-
n

-

se

not appear in inclusive DIS cross sections. To extract a
information for it, we must therefore carry out more speci
semi-inclusive-type scattering experiments. Very recen
such an experiment has in fact been done by the CLAS C
laboration @23#. They measured the azimuthal asymme
ALU in electroproduction of pions from deeply inelastic sc
terings of longitudinally polarized electrons off unpolarize
protons.

The first theoretical analysis of the CLAS data was c
ried out by Efremovet al. @29,30#. Their analysis assume
that the beam single-spin asymmetry measured by the CL
group is dominantly generated by the so-called Coll
mechanism@46#. Under this assumption together with a pa
ticular parametrization for the Collins fragmentation fun
tion, they were able to extract the first information on t
chiral-odd twist-3 distribution functione(x). Recently, this
analysis was criticized by Yuan@47#. According to him, there
may be another mechanism which competes with the Col
mechanism @48,49#. It is the leading-order transverse
momentum-dependent parton distributionh1

'(x,k') convo-

luted with chiral-odd fragmentation functionê(z). After all,
the fact is that we still have poor knowledge about t
mechanism that generates the beam single-spin asymme
semi-inclusive deep-inelastic scatterings. We must und
stand the mechanism of parton fragmentation processes
hadrons, especially the physics of time-reversal-odd fr
mentation functions@46,50#. We must also clarify the dy-
namics of transverse-momentum-dependent parton distr
tion functions in combination with the physics of chiral-od
fragmentation functions@48–50#. A truly reliable extraction
of the chiral-odd twist-3 distribution functione(x), which is
of our primary concern here, can be achieved only afte
more complete understanding of the above-mentio
mechanisms of semi-inclusive DIS processes.

Keeping this fact in mind, we shall proceed here by a
suming dominance of the Collins mechanism. Under this
sumption, the asymmetry measured by the CLAS experim
is interpreted to be proportional to

ALU
sin f;2

4pa2s

Q4
le2yA12y(

a
ea

2x2ea~x!H1
'a~z!,

~81!

with y5(P•q)/(P• l ),z5(P•ph)/(P•q) ands is the invari-
ant mass squared of the photon-hadron system in the nota
of @29#. le denotes the beam helicity. The chiral-andT-odd
twist-2 ‘‘Collins’’ fragmentation functionH1

'a(z) gives the
probability of a spinless or unpolarized hadron to be crea
from a transversely polarized scattered quark. Using in
mation onH1

'a(z) from HERMES data@24,25#, one can then
get direct information on the distribution functione(x)
@29,30#. In the CLAS experiment, the azimuthal asymmetr
ALU

sin f for the processeWp→e8p1X were measured atQ2

;1.5 GeV2. Under the dominant-flavor-only approximatio
for the fragmentation functions, the semi-inclusivep1 pro-
duction measures the following combination of distribution

eu~x!1
1

4
ed̄~x!. ~82!

r
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In Fig. 9, we make a comparison between the prediction
the CQSM for the above combinations of the distributio
and the corresponding empirical information extracted fr
the CLAS data by Efremovet al. @29,30# under the assump
tion of Collins mechanism dominance. The theoretical dis
bution here corresponds to an energy scale ofQ2

51.5 GeV2. The scale dependence of the distribution
taken into account by solving the leading-order DGLAP-ty
equation obtained in the large-Nc limit @35#. ~The starting
energy scale of this evolution is taken to beQini

2

.0.30 GeV2.) The distribution eu(x)1 1
4 ed̄(x) extracted

from the CLAS data contains large errors mainly due to
large uncertainties ofH1

'(z) from the HERMES data
@24,25#. Still, it was emphasized in@29,30# that the extracted
distribution is definitely larger than the ‘‘twist-3 bound’’ an
about 2 times smaller than the corresponding unpolari
distribution f 1

a(x) at the same energy scale. One sees that

theoretical prediction foreu(x)1 1
4 ed̄(x) is in fairly good

agreement with the extracted behavior from the CLAS da
The relatively small magnitude of the extractede(x) indi-
cates that there must be a significant contribution to thepN
sigma-term sum rule from the small-x region. Whether this is
due to the indicatedd-function singularity ine(x) or it is due
to yet-unresolved Regge behavior in the small-x region is
difficult to judge at the present stage of study. It is high
desirable to extend the region of measurements to a sma
x region. This is important, because unambiguous estab
ment of the violation of thepN sigma-term sum rule would
indirectly prove the existence of a noveld-function singular-
ity in the distribution functione(x) of the nucleon, which in
turn may be interpreted as a manifestation of the nontri
structure of QCD vacuum in an observable of a localiz
QCD excitation: i.e., the nucleon.

Finally, we want to make some comments on the pred
tion for e(x) based on the MIT bag model. As mentioned
@30#, the bag model prediction of@28# evolved to the com-

FIG. 9. The theoretical prediction fore(x)5eu(x)1
1
4 ed̄(x) in

comparison with the corresponding empirical information extrac
from the CLAS data at̂Q2&51.5 GeV2 under the assumption o
Collins mechanism dominance.
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parable energy scale ofQ251 GeV2 is in qualitative agree-
ment with the extractede(x) from the CLAS data in@30#. In
our opinion, this agreement should be taken as fortuitous
the following reason. First, as already pointed out, the is
inglet scalar charge of the nucleon predicted by the MIT b
model is only about 15% of the value expected from t
phenomenological knowledge of thepN sigma term. The
fact is that the nucleon isoscalar charge is a quantity of or
1 ~or orderNc , more precisely! in the MIT bag model or in
any other model which contains three valence-quark deg
of freedom only. The situation is totally different in th
CQSM. Although the contribution of theNc valance level
quarks is of the same order as that of the MIT bag model,
vacuum polarization effect or the contribution of the Dira
sea quarks gives a nearly 7-times-larger contribution as c
pared with that of the valence quarks, thereby reproduc
the correct magnitude of the nucleon scalar charge or thepN
sigma term. Unfortunately, this crucial difference betwe
the two models is not reflected in the observable distribut
functione(x). Since the Dirac-sea contribution in the CQS
is nearly saturated by thed-function singularity, it happens
that the distributionse(x) at xÞ0 predicted by the two mod
els are not extremely different from each other. This is
reason why the naive MIT bag model, which fails to expla
the magnitude of thepN sigma term, can reproduce the em
pirical distribution e(x) extracted from the CLAS data a
least qualitatively.

Still, we will show that there are some qualitative an
observable differences between the predictions of the CQ
and MIT bag model. The key observation here is that, for
spin-independent chiral-odd twist-3 distribution function
the MIT bag model predicts no flavor dependence. That
within the framework of the naive MIT bag model, we hav

eu~x!5ed~x!, eū~x!5ed̄~x!, ~83!

or, more specifically,

eu~x!1
1

4
ed̄~x!5ed~x!1

1

4
eū~x!. ~84!

Such equalities can be expected to hold only in the fictitio
limit of Nc→`. As is in fact the case with the CQSM, for
finite value of Nc , the isovector distributione(T51)(x)
5eu(x)2ed(x) does not vanish, so that we definitely expe
that

eu~x!1
1

4
ed̄~x!Þed~x!1

1

4
eū~x!. ~85!

Figure 10 shows the comparison of the predictions of the
models for the distributionseu(x)1 1

4 ed̄(x) and ed(x)
1 1

4 eū(x) evolved to the energy scale of CLAS experime
i.e.,Q2.1.5 GeV2 from the initial energy scale of the mode
Qini

2 .0.30 GeV2. The solid and dashed curves here sta
for the predictions of the CQSM, respectively, foreu(x)
1 1

4 ed̄(x) and ed(x)1 1
4 eū(x). On the other hand, the dot

dashed curve represents the prediction of the MIT b
model, which gives an identical answer for both these co

d
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binations of distributions. One sees that the CQSM predic
sizably large difference between the two distributionseu(x)
1 1

4 ed̄(x) and ed(x)1 1
4 eū(x), in sharp contrast to the MIT

bag model. In principle, the possible differences of these
distributions can be detected by performing a compara
analysis of the semi-inclusivep6 andp0 productions.

IV. SUMMARY AND CONCLUSION

In summary, we have given theoretical predictions for
chiral-odd twist-3 distribution functionea(x) of the nucleon
with each flavora on the basis of the chiral quark solito
model. A prominent feature of the isosinglet combination
the distributions,eu(x)1ed(x), is that its first moment is
proportional to the familiarpN sigma term and that it con
tains a delta-function singularity atx50. In the previous
study based on the derivative expansion technique, we d
onstrated that the physical origin of this singularity can
traced back to the long-range quark-quark correlation of s
lar type, which signals the spontaneous chiral symme
breaking of the QCD vacuum. The present calculation, w
out recourse to the derivative-expansion-type approximat
has revealed the following facts. The isosinglet distribut
eu(x)1ed(x) consists of two parts: i.e., the contribution
Nc valence level quarks and that of the Dirac sea quark
the hedgehog mean field. The former takes a familiar sh
of distribution which has a peak around the value ofx
.1/3. On the other hand, the latter certainly contains
d-function-type singularity atx50, but it also has nontrivia

FIG. 10. The predictions of the CQSM foreu(x)1(1/4)ed̄(x)

anded(x)1(1/4)eū(x) evolved to the energy scaleQ2.1.5 GeV2

of the CLAS data from the initial scale of the modelQini
2

.0.30 GeV2. Also shown for comparison is the prediction of th
MIT bag model evolved to the same scale from somewhat lo
energy scale ofQini

2 .0.16 GeV2.
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support for xÞ0. The isovector distributioneu(x)2ed(x)
also consists of the valence and Dirac-sea contributions.
this distribution, however, no delta-function-type singular
is observed, which means that it is a regular function in
the range ofx.

The moment sum rules ofe(x) provide us with valuable
information concerning the basic dynamical content of
model in view of the underlying theory: i.e., QCD. W
showed that the first-moment sum rule foreu(x)1ed(x) is
satisfied within the model if and only if the delta-functio
singularity is properly taken into account. Note however th
the delta-function term alone does not saturate the first
ment or thepN sigma-term sum rule in contrast to the pr
vious argument based on the framework of the perturba
QCD. We also pointed out that the second-moment sum
for eu(x)1ed(x) does not vanish even in the chiral limit i
contrast to the QCD equation-of-motion argument. In o
opinion, this violation of the second-moment sum rule do
not necessarily show a defect of the model. It is rather to
interpreted as showing the limitation of the perturbati
analysis as a tool of handling a bound-state problem an
the problem of masses nonperturbatively generated by
mechanism of the spontaneous chiral symmetry break
We have also shown that the model prediction for the fi
moment of the isovector distributioneu(x)2ed(x) comes
out to be order of magnitude consistent with the phenome
logical estimate obtained from the nonelectromagne
neutron-proton mass difference.

It was shown that the theoretical predictions for the d
tribution eu(x)1 1

4 ed̄(x) are in a good agreement with th
corresponding empirical information extracted from t
CLAS data for the semi-inclusivep1 production under the
assumption of the Collins mechanism dominance. T
agreement, combined with our analysis explained in the t
implies the existence of ad-function singularity atx50 in
the isosinglet distributioneu(x)1ed(x), although a definite
conclusion must await for more complete measurements
a more thorough understanding of the reaction mechan
that generates the beam single-spin asymmetry in se
inclusive pion production.

Finally, we compare our theoretical predictions with tho
of the MIT bag model. As shown in the body of the pap
the two models give accidentally close predictions for t
distribution function eu(x)1 1

4 ed̄(x) at xÞ0. We have
shown, however, that the CQSM predicts a sizably large
ference between the two distributionseu(x)1 1

4 ed̄(x) and
ed(x)1 1

4 eū(x), for which the MIT bag model makes no dif
ference. The predicted sizable difference between the
combinations of distributions will be detected by performi
a comparative experimental analysis of semi-inclusivep6

andp0 production.
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