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The isosinglet combination of the chiral-odd twist-3 distribution funced(x) +e%(x) of the nucleon has
the outstanding properties that its first moment is proportional to the well-kneMrsigma term and that it
contains as-function singularity ak=0. These two features are inseparably connected in that the above sum
rule would be violated if there is no such singularityeif(x) + e%(x). Very recently, we found that the physical
origin of this §-function singularity can be traced back to the long-range quark-quark correlation of scalar type,
which signals the spontaneous chiral symmetry breaking of the QCD vacuum. The main purpose of the present
paper is to give complete theoretical predictions for the chiral-odd twist-3 distribution furet{ah of each
flavor a on the basis of the chiral quark soliton model, without recourse to the derivative-expansion-type
approximation. These theoretical predictions are then compared with the empirical information extracted from
the CLAS data of the semi-inclusive DIS processes by assuming the Collins mechanism only. A good agree-
ment with the CLAS data is indicative of a sizable violation of ti¥ sigma-term sum rule or, equivalently,
the existence of @-function singularity ine!(x) +e%(x).
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[. INTRODUCTION odd nature, it does not appear in the cross section formula of
inclusive deep-inelastic scatteringDIS). The situation
It is a widely accepted common belief now that the non-changed drastically, however, since the CLAS Collaboration
perturbative dynamics of QCIzhiral dynamicgis an indis- was able to get the first experimental information on this
pensable element for understanding high-energy deep inelasyteresting quantity through measurement of the azimuthal
tic scattering observables. Undoubtedly, the reconfirmatiomsymmetry A, in the electroproduction of pions from
of this natural fact is strongly based on to the two remarkableleeply inelastic scattering of longitudinally polarized elec-
experimental discoveries in this fie[d—3]. They are the trons off unpolarized proton23-25.
unexpectedly small quark spin fraction of the nucleon re- Some years ago, within the framework of perturbative
vealed by the European Muon CollaboratiEMC) mea- QCD, Burkardt and Koike noticed that the first moment sum
surement[1,2] and the light-flavor sea-quark asymmetry rule (or the w#N sigma-term sum rujefor e(x) holds only
confirmed by the New Muon CollaboratighMC) measure- whene(x) has as-function-type singularity at the Bjorken
ment[3]. The most successful theoretical studies of partorvariablex=0 [26]. Unfortunately, the physical origin of this
distribution functions have been carried out within thesingular term is not very clear in this perturbative analysis.
framework of the chiral quark soliton modglCQSM  Very recently, two independent proofs were given to the fact
[4-15], which is an effective model of baryons maximally that the physical origin of thig-function singularity can be
incorporating the spontaneous chiral symmetry breaking ofraced back to the nonvanishing vacuum quark condensate
the QCD vacuum. In fact, we claim that it is so far the only which signals the spontaneous chiral symmetry breaking of
effective model of baryons which is able to explain the abovehe QCD vacuuni20,21]. An interesting question is whether
two remarkable findings simultaneously within a single the-we can verify experimentally the existence of thigunction
oretical framewor{16-19. singularity ine(x). Unfortunately, the poink=0 is experi-
Very recently, we became aware of another novel examplenentally inaccessible. This means that, if there really exists
in which nonperturbative QCD dynamics plays an unprecsuch ad(x)-type singularity ine(x), the experimental mea-
edented role in the physics of parton distribution functions. ltsurement would rather confirm violation of thisN sigma-
concerns the possible existence of a delta-function singulaterm sum rule. Nonetheless, sinegx) in the regionx+0
ity at the Bjorken variablex=0 in the chiral-odd twist-3 can in principle be measured, theorists are challenged to ex-
distribution functione(x) of the nucleorj20,21]. This distri-  plain its behavior.
bution function itself, together with its first moment sum rule  The first theoretical study af(x) was done by using the
giving the familiar 7N sigma term, has been known for a MIT bag model[27]. (See alsd28].) However, this estimate
long time[22]. In spite of several interesting theoretical fea- based on the bag model cannot be taken as a realistic one by
tures, however, this distribution function has been thought ofhe following reasons. First, its prediction for the magnitude
as an academic object of study, since, because of its chirabf the #N sigma term is far from reliable. Second, more
seriously, it cannot reproduce thfunction singularity of
e(x). Both these featureghey are not actually unrelated
*Electronic address: ohnishi@kernl.nclth.osaka-u.ac.jp are easily anticipated, since the MIT bag model is essentially
"Electronic address: wakamatu@phys.sci.osaka-u.ac.jp a relativistic quark model witiN.(=3) valence quark de-
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grees of freedom only, and the reproduction of the nonzeravhere s, are quark fields. Similarly, the corresponding anti-
vacuum quark condensate is beyond the range of applicabiguark distribution is defined as
ity of this model. The first realistic investigation efx) was
carried out by Efremovet al. on the basis of the chiral quark _
soliton model but within the “valence” quark only approxi- e;(x)= p+ Jx dieixPJrz’
mations[29,30. More recently, the present authors and Sch- — 27
weitzer independently carried out more careful analysis of of 0c
the contribution of the Dirac sea quarks on the basis of the X(N[45'(0) Y 45 (2)[N) [+ —0z, =0, 2
gradient-expansion-type approximation and confirmed that
the isosinglet combination of(x) certainly contains a . N . )
s-function-type singularity[20,21. After some analysis of With #° being the charge-conjugate field ¢f Here we use
higher-derivative terms of the expansion, however, Schin€ standard light-cone coordinates
weitzer retreated to the assumption that the contribution of
the Dirac sea quarks is saturated by th{g) term alone. As
admitted by himself, however, whether this last assumption 7F=— —— pr=——— (3)
is justified or not is far from trivia[20]. To confirm it, one V2 2
has to carry out an exact numerical calculation within the
model without recourse to the gradient-expansion-type ap- _ _ _ )
proximation. Furthermore, to compare the predictions of thel '€ Vvariable x denotes the Bjorken variables=—q“/
model with the experimental data of the CLAS Collabora-(2P-d), with q being the 4-momentum transfer to the
tion, one must knove?(x) of each flavor. To this end, only nucleon. Taking account of the charge-conjugation property
knowledge of the isoscalar combinatief‘(x)+ed(x) is not Ofthe relevant_quark b|||nea_1r o_per_ator, one can formally ex-
enough. We need another independent combination: i.e., tffgnd the domain of quark distribution functions from the in-
isovector distributione¥(x)—e%(x). Within the framework (€val 0sx<1to —1<x<1, such that
of the CQSM, this latter distribution survives at the next-to-
I[(;%?'mg order in M. expansion and it was left untouched in (x)=e%(—x) (0=x=1), @

In view of the above-mentioned circumstances, we think

it important to carry out an exact model calculation within\yhich dictates that the distribution function with negative
the CQSM for both of the isoscalar and isovector combinaghouid be interpreted as antiquark one.

tions of the chiral-odd twist-3 distribution functi@{x). We Although the above definitions of the quark and antiquark
also think it useful to analyze the first- and second-momenjistribution functions are frame independent, it is convenient
sum rule for e"(x)+e"(x) and €"(x)—e"(x) within the 5 perform the actual calculation in the nucleon rest frame. In

CQSM in light of the corresponding sum rule expected in they,g frame, we hav®* =M /42, and the distribution func-
general framework of perturbative QCD. The predictions ofiq 1 is reduced to

the model fore¥(x) anded(x) (as well as the corresponding
distributions for antiquarksare then used as initial distribu-

tions given at the model energy scale around 600 MelvV a =dzy oy

Q2=0.30 Ge\?), and they are evolved to high@? for the e (X):MNﬁxﬁe N0

sake of comparison with the phenomenological information

obtained by using the CLAS measurement. ><(|\||(1,2(0)yowa(z)||\|>|23=7zo'zfo_ (5)

The paper is organized as follows. In Sec. Il, after a brief
introduction of the basic idea of the CQSM, the theoretical
expressions foeY(x)+ed(x) and e'(x)—e(x) are given. Throughout the paper, we will confine ourselves to two fla-
The fundamental moment sum rules for these distributionsor case ofu andd quarks, and neglect strangeness degrees
are also discussed here in some detail. Section Il is devoteof freedom in the nucleon. Consequently, we have two inde-
to a discussion of the numerical results. Finally, in Sec. IV,pendent distributions: i.e., the isosinglet distribution

we summarize what we have found. e(T=0(x)=eY(x) +e%(x) and the isovector one(™=1)(x)
=eY(x)—ed(x). In the case 0&(T=9(x), we simply sum up
I. e(x) IN THE CHIRAL QUARK SOLITON MODEL Eq. (5) over the flavor components. On the other hand, for

eT=1(x), we have to sum up the representation after insert-
ing 73 matrix in Eq.(5).

For obtaining quark distribution functions, we must gen-
erally evaluate nucleon matrix elements of bilocal and bilin-

- dz- ear quark operators containing two. spacg-time coordinates

e%(x)= p+f —= gixPTz with light-cone separation. The starting point of our theoret-
— 27T ical analysis is the following path integral representation of

+ o the matrix elements of a bilocal and bilinear quark operator

X(N1(0)y ‘/’a(z)|N>|Z+=0A=0' @) between the nucleon states with definite momenRim

The chiral-odd twist-3 quark distributicef'(x) of flavora
inside a nucleon with 4-momentuR) averaged over its spin,
is defined by
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(N(P)|#(0)y*y(2)IN(P)) e(T=0(x)=e"(x) + e%(x)
:%f d3Xd3ye*iP.xeiP~yf DUwaDwTJN(;x) :Mwax(;_jToeixMNzo
wa(O)yozﬂ(z)JL(—;y) X(N[HOVUDIN) |- 5 2 0. (12)

Following the general formalism developed [i4,5,9, the
; (6)  isosinglet distribution in the CQSM is given in the following

X ex;{ i f d*x,

form:
where
- e(T=°)(x)=—NCMNr]§>:0 (n[y°8(xMy—pz—En)[n)
L=y[ib—MUs(x)]4, (7 (13
with .
=NeMy 2, (n]°8(xMy—ps~Eq)ln),
U75(X)IEX[Z[i’yST- ﬁ(x)/fﬂ.] (8) - (14)
being the basic Lagrangian of the CQSM with two flavors.yyhere |n) and E, are the eigenstates and the associated
The quantity eigenenergies of the static Dirac Hamiltonian
1 e a {fq- -yt ——in. in-FF(r)
I = N NCFJJZ’TTZC Vgt y (0 Vg 1, () H=—ia V+3Mes : (15

©  with the hedgehog background. Here, the summatign,
in Eq. (14) is meant to be taken over the valence-quark or-
is a composite operator carrying quantum numideks TTs bital (it is the lowest-energy eigenstate that emerges from the
(spin, isospin of the baryon, wherey; are the color indices, positive-energy Dirac continuumplus all the negative-
while Fgfjl' };Nc} is a symmetric matrix in spin flavor indices energy Dirac-sea orbitals. On the other hand, the summation
fi. We 33t;51rt3 with a stationary pion field configuration of Zn=0 IN E_q. (13 is_meant to be Faken over all the positive-
hlédgehog shape: energy Dirac continuum excluding the discrete valence or-
: bital. We recall that the CQSM is defined with some appro-
R priate regularization. In fact, without regularization,
m(x)="f,rF(r). (100 e(T=9(x) is quadratically divergent, and no practical mean-
ing can be given to either of Eq&l3) and (14). The ideal
Next we carry out the path integra| OVﬁ(X) in a saddle regularization scheme for our purpose is the Pauli-Villars
point approximation by taking care of two zero-energysubtraction scheme, since it preserves several fundamental
modes: i.e., the “translational zero modes” and “rotational conservation laws of field theorj4,5]. Furthermore, it is
zero modes.” Under the assumption of “slow rotation” as also expected to preserve the equivalence of the two ways of
compared with intrinsic quark motion, the answers can b&omputing the quantity in question, by using E(s3) and
obtained in a perturbative series fd, which can also be (14). In the present study, we use the double-subtraction
regarded as a I, expansion. Up to first order in the collec- Pauli-Villars scheme as introduced j81], sincee!"~(x)
tive rotational velocityQ2, the only surviving contribution to ~ diverges like the vacuum quark condensate. In this scheme
e(T:O)(X) arises at th@(ﬂo) term of th|s expansion' Since the-d|Str|bUt|0ne(T_O)(X) IS replaced with a I’egu|al’lzed one
the O(QY) term vanishes identically due to the hedgehogdefined as
symmetry. ((T)nl)the other hand, the filrst nonvanishing contri-
bution toe'' ~*/(x) arises at thed({)"), since the leading B B A B _
O(Q2% contribution vanishes due to the hedgehog symmetry. M0 =eM0)M - 21 Ci(m) e 900", (16)
Then, between the magnitude of the above two distributions,
one may expect the following large; relation:

2

Heree(x)i is obtained frome(x)M by replacing the mass
" d " g parameteM by A; . It was shown ir[31] that, if the param-
|€(x) +€7(x)| ~Nc|e"(x) —e(x)]. (1) eterscy,c,, A4, andA, are chosen to satisfy the two condi-
tions
A. Isosinglet distribution eT=9(x) ,
2
The isosinglet combination of the chiral-odd twist-3 un- _ ) ﬁ _
; ngiet comuine 1-> ¢ 0, (17)
polarized distribution is given by -1 \M
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4 with f§(x) being the twist-2 unpolarized distribution with
=0, (18  flavor a. The presence of the factd,-, here dictates that

the first moment o2

2
A
1— E Ci(ml
=t a_{x) vanish:

the quadratic as well as the logarithmic divergences in the N
vacuum quark condensate are completely eliminated. f e (x)dx=0. (24)
Actually, we are interested in the nucleon observables
measured in reference to the physical vacuum, so that
e(T=9(x) should be replaced by It is also known[33—-36 that the first two basic Mellin mo-
ments ofef, 5(X) vanish—i.e.,

e(Tzo)(X)_)e(TZO)(X)E egT=0)(X) _ eg:jLO)(X) . (19)

1
Here the vacuum subtraction teref, ~(x) is obtained fﬁlx” ‘efus(x)dx=0 for n=1,2. (25
from e{[=%(x) by settingU=1 or F(r)=0 and by exclud-
ing the sum over the discrete valence level. We point oupyiting the above-mentioned properties altogether, the first-
that, as a result of the energy-momentum conservation eMyoment sum rule for the isoscalar combination of
bedded in the factof(xMy— E)3— En), the vacuum subtrac-  e?(x)—i.e., eT=9(x)—takes the form.
tion terms are required only for<O in the occupied form
(14) and forx>0 in the nonoccupied forril3). This means T SN
that the vacuum subtraction terms need not be considered f e 9(x)dx= peaal (26)
whene(T=9(x) is evaluated in the following way—i.e., if it ' 0
is evaluated by using the occupied form for 0, while us-
ing the nonoccupied form fax<<O0.

which is nothing but therN sigma-term sum rule. Note that
this sum rule is saturated by the first term of E2{l) alone.
On the other hand, the second Mellin momenedf 9(x) is
given by

The most important information of the distribution func-
tions is generally contained in their first few moments of 1 Mo
lowest orders. This is also the case for the distribution f xe(T=°)(x)dx=M—Nc, (27)
e(™9(x). In a recent paper, Efremov and Schweitzer re- -1 N
viewed some of the important sum rules for the chiral-odd . : I :
twist-3 distribution functions in an enlightening wag2]. whereN; Is the number of color, which coincides with the
Their argument starts with the general definition of the dis-"Umber of quarks contained in a baryon-number-1 system—
tribution with flavora as i.e., N.=3. We point out that this second Mellin moment of

e(T=9 vanishes in the chiral limit ofny=0.
1 (dn . _ Next, we turn to the discussion of the moment sum rule in
e?(x)= Mo 2—e"‘X<N|zpa(O)[O,)\n]wa(anN), the CQSM. Integrating Eq14) overx, the first moment of
NS T (20 e(T=9(x) is given as

Momentum sum rules of &=9(x)

where[0\n] denotes the gauge link. By using an operator fl eT=0(x)dx=N, >, (n[7°|n). (28)
identity following from the QCD equation of motioe?(x) -1 n<o0

is shown to be decomposed in a gauge-invariant way into the

three pieces Since the right-hand sidéeRHS) of this equation is nothing

a a a a but the scalar charge of the nucleon within the CQSM, the
€%(X) = €ging(X) * €ua(X) + Epasd X) - (21 sigma-term sum rule immediately follows:

Hereeging(x) denotes a singular term given by 1 — 3.
f eT=9(x)dx=0o= —- (29)

— -1 o

eging(x) = 5(X)<N| l//allfa| N). (22

. . . The way of this sum rule being satisfied is far more delicate

On the other handafwg(x) Is a genuine twist-3 part Cﬁa(x), in the CQSM than in the above QCD-motivated analysis. As

th_at contgms information on quark-gl_upn—quark correlations gy q\un by our previous study, although the model certainly

Finally, e;,,s{X) denotes the term arising from the nonzero predicts thes(x)-type singularity ine(’=%(x), this term

current quark mass. It is a somewhat peculiar function dezjone does not saturate theN sigma-term sum rule. The

fined through its Mellin moments 483-3§ model also predicts a nontrivial structure &f =% (x) at x
L N # 0, which may contribute to the first-moment sum rule. We
f xLle? (x)dx= 5n>1_0f xM2£3(x)dx, shall d|_scuss this point in more detqll in the next section.
- MyJ -1 Turning to the second moment, it is easy to show from

(23 Eq.(14) that
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T N . N 1 O
(T=0) __° 0 - c
xe X)dx= n +E,)[n). (30 (T=1)(x)= — ¢z
fﬁl (X) MNE()( |7’ (Ps+En)[n). (30 elT™D(x) = —(2T3), My, 321 m:;mm AL
Owing to the hedgehog symmetry of the soliton, the term X<m|7a'y0( S B 6’)|n>
containingyof)g vanishes, and we are left with Em—En
1 3
1 N
f_lxe(T:O)(x)dx= M—CN nZO En<n|y0|n>_ (31 <2T3>pMN 2 § Z &0 <n|7-a| m)
ol 6n 1
Following [20], it is convenient to rewrite the RHS of the X(Mrayl g g oy /Im. - 3D
above equation in the following manner. First, notice the mon N
identity

~ J ~
with 6,= 8(xMy—E,—P) and &)= 8(xMy—E,~p?).

Herel in the RHS of Eq(37) is the moment of inertia of the

1 . 1
En(n[¥7[m = 5(nl{H, ¥} =mo+M(n|5(U+UDIn). L~ given by

(32 .
N¢ <n|7'a| m><m|7a|n>
Here we have tentatively restored the current quark mass I= 6 azl mE>O néo En—E, . (38)
term in the model HamiltoniaHi, just for the sake of expla-
nation here only; i.e., we have used here In Eq. (37), (O), should be understood as an abbreviated
R notation of the matrix element of a collective opera@r

H=—ia-V+AMe"s™ ) +m,. (33)  between thdspin-up proton state—i.e.,

;I;r;?nn, the second moment sum rule in the CQSM takes the <O>DEJ q,_?:TS:l/Z;J:JS:m[gA]O[gA]
L N XWr_t,—129-3,-1d Ealdén
(T=0) =_°
€ X)dx= Mo+ M), (34)

[ xeT000x= 1 (o o) -

with In the present case, we ha{2T3),=1

We immediately notice that the above expressions are not

suitable for the actual numerical calculation. Here, we shall
E (U +U")[n). (35)  proceed as in the previous stud[@10]. First, note that the
n=0 term containing the derivative of thes function in Eq.(37)

can be rewritten as
It is clear now that the RHS of this sum rule does not vanish
even in the chiral limit ofmy=0, contrary to the sum rule ~d N1 D 05
derived from the QCD equation-of-motion method. We shall 2=~ g 732 & ([ 7alm){m| 737" 8s|n)
return to this point in the next section.

=2 o) (40
—— —e X).
B. Isovector distribution e(T=(x) " 4IMy dx
The isovector distribution is defined by Here we have made use of the completeness of the eigen-

states|n) of the static Dirac Hamiltoniail. [We recall that
e,(x) term originates from the nonlocality in time of the
dzo XMz operatorzp(O)lrazp.(z) in Eq..(36)..] It shqulq be_ recggnized
730277 that thex derivative of the isosinglet distributioa™ =% (x)
appears in the right-hand side. Since we already know that
the isosinglet distributior("=%(x) has thes(x)-type singu-
(36) larity connected with the nonvanishing vacuum expectation,
23=725.2, =0 it then follows thate,(x) has the derivative-o8(x)-type sin-
gularity. However, it is unlikely that the net isovector distri-
Within the framework of the CQSMe(T=1)(x) survives only  bution e"=1(x) has such a singularity, because the QCD
in the next-to-leading order in the collective angular velocityvacuum should not violate isospin symmetry so that vacuum
Q. Following the formalism derived if9,10], the final an- quark condensate of isovector type must simply vanish. This
swer is written in the form apparent discrepancy can be resolved as follows. We first

eT=D(x)=e"(x)—e%(x)

:MN

X (N|¢(0) 7314(2)|N)
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divide the double sum of Eq37) into the sum over terms ference of neutron and proton. In fact, the nonelectromag-
with E,,=E,, and withE,#E,,. The point is that the sum netic neutron-proton mass difference is thought to be gener-
with E,=E, in e;(x) can be rewritten in a similar form as ated by the isospin breaking term in the QCD Hamiltonian:
the corresponding term ie,(x):

m
AH=—

-my — o
2 (dfu‘//u_ 'r//d{r/ld)' (45)

N, 1
e(X)=My5- 5 > —(n|7a|m)
21 3 a m=all,n<0 Em En
(Em#Ep) Because of the smallness of all the massgsmy,mqg—m,
d N1 compared with the typical energy scale of hadron physics,
. e : -
X (m|7,y°8,|n) + 9Xdl 3 2 2 (n| 7,/ m) we can treaﬂH_as a first-order perturbation, thereby being
X4l 3 F m<On=o led to the following formula for the nonelectromagnetic mass

Em=En) difference between neutron and proton:

m

(Em

n<
En

x(m|7,9°8,|n), 41
mi7ay" sl @D My Mp)gco=(nlAHIn)—(plaH|p)
d N: 1 0 — _
eZ(X):____E 2 <n|7'a|m><m|7a'y 5n|n> :(md_mu)<p|¢u$u_‘//d¢d|p>' (46)
dx 41 3 7 mEaII,ESO
(Em*En) where use has been made of the isospin symmetry for the
d Ne 1 o unperturbative statép),|n) (i.e., the invariance under the
T dx 41 3 ; m<%<o (n[a[m){m| 747" 8,[n). interchangesp«~n and u«~d). Empirically, the neutron-
(Em=Ep) proton mass difference of QCD origin can be estimated from
the observed mass difference by taking account of the cor-
(42 . e Jo
rection due to the electromagnetic interactions:
Now, just as argued ifl0,9], theE,,= E,, contribution in the _ o o
double sums ire;(x) ande,(x) precisely cancel each other. (Ma=Mploco=(Mn=Mp)expi= (Mn=Mplem. (47)
After regrouping the terms in such a way that this canceIIaUSin the values M. — ~1.29 MeV -M
tion occurs at the level of analytical expressions, (&)*) 2(_% 76+ 0.30) ,\I/Ylenv[wﬁ’)%cgt obtain ‘Ma=Mplem
L R o 1)( vy AU . . ,
contribution to the distribution functiom! (x)=¢e"(x)
—ef(x) can finally be written in the following form: (Mp—Mp)ocp=(2.05£0.30 MeV. (48
To extract the first moment o&(T=1(x) empirically, we
(T=D)(x)= _tZ [ )
€ (%) MN2| 3 za: m=§jn$0 (nlralm) need to know the value ofmg—m,. By using my—m,
(Em#En) =5 MeV, as an order-of-magnitude estimate, we obtain
)
0 n ’ 1 M,—M
X(mlmay\ g~ —5 In). (43 f V0 dx= %20.411 0.06. (49)
- u

The fact is that, in the double sum of E42), the singularity
connected with the nonzero vacuum quark condensate ComeEs,
only from E,=E, contribution: i.e., the second term of Eq.
(42). As mentioned above, after ti&;n E, contributions in 1 N 1 (n| 7,/ m}{m| 7,77 n)
e1(x) ande,(x) are canceled, these singularities disappear inf =513 E _E

Eq. (43). The final theoretical formula43) is therefore free n=0m=0 m.=n 50
from any singularity which contradicts the symmetries of the (50

QCD vacuum, and it provides us with a sound basis foljere we have used the fact that, since the contribueigr)
numerical calculation. is a total derivative, it does not contribute to the integral of
Eq. (50). After integration ovek, the double sum over levels
in Eq. (50) is naturally restricted to include only transitions
Here we discuss the first moment sum rule of the isovecfrom occupied to nonoccupied states. This is reasonable,
tor distribution. Integrating E((36) over x, we obtain since the operator appearing on the RHS of B4 is a
local operator, and transitions from occupied to occupied
T=1 . u d NS states would violate the Pauli principle. Within the frame-
j_le( (x)dx= J_l[e (%) =€) Jdx=(N|75¢IN). work of the CQSM, we can evaluate the RHS of E4f)—
(44) i.e., the isovector scalar charge of the nucleon
(N] ¢r3¢|N)—d|rectIy without passing through the distribu-

(Here, 73y should be taken as an abbreviated notation ofjon function. Since the resultant expression(Bf#73|N)
f(//(y) m3¢(y)d3y, which gives the isovector scalar charge precisely coincides with the RHS of E¢50), we conclude
operaton An interesting observation is that the first momentthat the first moment sum rule ef"=)(x) is properly sat-
of eT=1(x) is related to the nonelectromagnetic mass dif-isfied within the model.

On the other hand, the theoretical expression for the first
ment ofe("T=Y)(x) is obtained from Eq(43) as

First moment sum rule of &=V (x)
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I1l. NUMERICAL RESULTS AND DISCUSSION =375 MeV, which is favored from the phenomenology of
nucleon low-energy observables. Wit =375 MeV, we
rﬁl@ve A,=627 MeV andA,=1589 MeV from the condi-
the twist:2 distributions q(x),Aq(x),8q(x) [8,9. The trons (17), (18). The static soliton energy'obtalned with these
. ) . Lo .parameters is about 1018 MeV. We point out that, although
eigenenergies and eigenvectors of the static Dirac Hamil}; )
) - . . the soliton mass emerges about 8% larger than the observed
tonianH with the hedgehog background are obtained by di- . .
P : nucleon massMy, the consistency with the energy-
agonalizing it with the so-called Kahana-Ripka plane-wave o m sum rule of the unpolarized distribution func
basis[38]. Following them, the plane-wave states, intro- . . P . )
. : tions enforces us to use this value ¥dr in the following
duced as a set of eigenstates of the free Hamiltomign . o .
o ; . : ; ._._evaluation of the distribution functions.
=—ia-V+ BM, are discretized by imposing an appropriate . ; : .
- . i We start with showing the numerical equivalence of the
boundary condition for the radial wave functions at the ra-.. : :
. L . ._~final answers based on the nonoccupied representation and
dius D chosen to be sufficiently larger than the soliton size. . ;
L S g - the occupied one. The problem here is the dependence on the
The basis is made finite by retaining only those states with S -
S = cutoff momentumk,, ., which is introduced to make finite
the momentunk satisfying the conditiolk<<k,,4. AS a re- . . : X : S
- S . ; e discretized Kahana-Ripka basis set. Since the distribution
sult of using this discretized momentum basis, the resultan

S ; , ) e(T=9(x) is ultraviolet finite after the introduction of the
distribution becomes a discontinuous functionxpfdue to . . o .
double-subtraction Pauli-Villars regularization, one might

the factor 6(xM,—E,—p3). In order to get a continuous eynect that the answers would be stable as far as one takes
function with a discretized basis, we introduce a smeareg  muych larger than the second Pauli-Villars cutoff mass
distribution function in the variable as[5] A,=1.6 GeV. This is not the case, however. As clarified in
[21], the S-function-type singularity ine(T=%(x) is gener-
e.(x)= B e*(X*X')Z’VZe(x’)dX’ 51) ated by the contribution of the infinitely deep Dirac-sea lev-
Y y\/; e ' els, which are naturally contained in either of the three terms:
i.e., the main term and the two Pauli-Villars subtraction
with a small but finite value of (y<1). The smeared dis- terms. This impllies- thqt the singularity,- which will appear in
tribution is expected to be continuous when the separatiofl® smeared distribution as a Gaussian peak aroun@
between the discretized momenta is much smaller than th#ith width -y, would be reproduced only in the ideal limit of
smearing widthy. Since the physical distribution corre- Kmax—. To achieve this ideal limit, we therefore use an
sponds to the limity— 0, this forces us to employ a very extrapolation method explgmgd below. For this extrapola_t|on
large box sizeD to get a continuous distribution function.  t0 be done smoothly, we first introduce an energy cutoff into
This procedure works very well at least for the standardhe level sumg13) and(14) of the form
distributions investigated so far. However, in the numerical _ dsorR
calculation ofe(T=%(x), we have a new problem which we (") € X) Jnonoccupied
have not encountered before. Our expectation is that, if a

The numerical method used for evaluatiax) in this
paper is essentially the same as the one used for computi

5(x)-type singularity really exists ire"=9)(x), the corre- _ 0 o

sponding smeared distribution would have a Gaussian peak NeM NnZO (nly7o(xMy=p3 = En)ImR(En),
centered aroung= 0 with width y. The problem here is that (52
the distribution function in question may also have a piece

that is nonsingular for all values of One might think that [e“(x)+ed(x)]ffccupied

the contribution of the singular part can be disentangled from

the total contribution by using the “unsmearing method” de- .

scribed in[5]. This is not feasible, however, for the following =NcMy X (n|y°8(xMy—p3—E,)|[MR(E,).  (53)
reasons. First, although the smearing procedure defined by n=0

Eq. (51) preserves the integral value of the distribution, we . : .
have noad hocway of knowing the overall coefficient of the Here R(E,) is a smootg regulatgr function with an energy
8(x) term of the distribution. Second, the smalbehavior ~ CUtOff Emax= VKiyaxtM?. For this regulator function, we
of the nonsingular part of the distribution would be hard to€mploy here a Gauusian function

know, because it is buried in the very large contribution of ,

the smeareds-function singularity. This point will be dis- R(En)=exfd — (En/Emay ‘], (54)

cussed in more detail in the following subsection. ] i i
following Diakonov et al. [5]. We first compute the level

sums(52) and(53) for several values df,,.x, in the case of
massedM, A1, andA,, respectively, and then perform the

In the numerical calculation, we fix the pion weak decayPauli-Villars subtraction, and finally remove the energy cut-
constantf_ in Eqg. (100 to its physical value—i.e..f,  off by the numerical extrapolation to infinity pointwise i
=93 MeV—so that only one parameter of the model is theln the present study, we use five ddi@orresponding to
dynamical quark masM, which plays the role of the cou- k;.,/M=12, 16, 20, 24, and 28and perform a least-
pling constant between the pion and effective quark fieldssquares fit of these data by using a fourth-order function of
Through the present analysis, we use the valueMof 1/, ..

A. Isosinglet distribution eT=9(x)
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60 60
extrapolation
50 | KoM =28 | 50 occupied
B :":/MM:ES 40 | nonoccupied
40 1 KoM=16 1T
KpudM = 12 30 |
30 J
20
20
10
10 0
0 -0 |
-10 : . -20 : .
-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
X X

FIG. 1. Thek,,, dependence of the Dirac-sea contribution to  FIG. 2. Comparison of the Dirac-sea contributionsets=%(x)
elT=9(x) based on the occupied representation. The solid curvébased on the occupietsolid curvé and nonoccupieddashed
represents the extrapolated result. curve representations.

Now we are ready to show in Fig. 1 tig,,, dependence two ways of evaluatinge"=)(x) confirms the equivalence
of the Dirac-sea contributions based on the occupied represf the two representations. At the same time, the analysis
sentation for all values ok. Here we use a value of  above establishes the existence of shiinction singularity
=0.1. This figure shows that the peak positions of thejn e!(x)+e(x) on numerical grounds. Some difference be-
Gaussian-like function obtained with the finite cutoff energytween the two curves at the positive- and negativails of
deviate to the negative-region from the origink=0. This  the Gaussian-like distributions would be a spurious one gen-
deviation of the peak position in the smeared distributionerated by the numerical extrapolation method. The contribu-
may be understood as follows. First, when one uses the 0Ogpns based on the occupied representatiorxfod and the
cupied representation, the vacuum substraction as reprepnoccupied representation far-0 can be obtained after
sented by Eq(19) is necessary only for the region<0,  cancellation of two large numbers: i.e., the main contribution
while it is not necessary fox>0, since the vacuum term and the corresponding vacuum subtraction term. On the other
identically vanishes fox>0 due to the restriction of the hand, if one uses the occupied representatiorxfe and
factor S(xMy—E,— E)3). Second, we recall the fact that the the nonoccupied representation f6£ 0, one is free from the
singular term o&{T=9)(x) emerges as a delicate cancellationspurious contribution due to the cancellation, so that the ex-
of two large numbers or infinities—i.e., the difference be-trapolated curves at these tail regions have reasonable
tween the main contribution with hedgehog background angmooth behavior.
the vacuum subtraction term obtained wiih= 1. These two Although we were able to confirm the existence of a
facts indicate that the use of the occupied form with someS(x)-type singularity in the numerical analysis &f =%)(x),
finite value ofy can reproduce the redistribution of the delta- we cannot exclude the possibility that té =% (x) may also
function strength atk=0 in the x<<0 region only, but it contain a regular term which is smooth in all the rangex.of
cannot do it properly in the>0 region, as far as the finite Is it possible to disentangle such a nonsingular term of
energy cutoff is used. This is the reason why the Gaussiare!"=%(x) from the total contribution containing the singular
like peak of the smeared distribution is shifted to theone? One should recognize that it is not so easy for the
negativex region. One can, however, confirm the behaviorfollowing reasons. First, the deconvolution method as pro-
that the position of the Gaussian peak approache® as posed by Diakonoet al. does not work because of the very
the energy cutoff is increased. And, finally, with the extrapo-delicate nature of the singularif$]. Second, we have nad
lation method, we obtain a reasonable result which showbocway to know the coefficient od(x) term in the original
that the peak of the smeared distribution is positioned just atnsmeared distribution. Nevertheless, we found that the fol-
x=0. [In the above analysis, we fix the box size to D& lowing trick works for obtaining the nonsingular distribution
=20. As a matter of course, to get physically acceptableexcluding thes(x) term. That is, as repeatedly emphasized,
answers, we must also investigate the dependence of the dpy using the nonoccupied expression xet 0 and the occu-
swers on the box sizB. We found that, abov®M =20, the pied one forx>0, we can avoid the vacuum subtraction.
change of the smal-behavior ofe(T=%(x) as illustrated in  Interestingly, this also works to remove the singular contri-
Fig. 1 is almost due to the increaselgf,,, and the answer bution in the bare distribution, and the corresponding
is stable against the further increaseDdf1 above 20} smeared distribution would not contain the Gaussian peak

After carrying out a similar analysis, this time, with use of corresponding to thé&(x)-type singularity.[One should re-
the nonoccupied representation, we can now compare th@ember the fact that the vacuum term plays an indispensable
final numerical results for the Dirac-sea contribution ob-role in reproducing thes-function singularity inet™=%(x).]
tained with the two alternative representations. Figure 2 Figure 3 shows thi,,,dependence of the Dirac-sea con-
shows this comparison. A reasonable agreement between thigutions based on the occupied representatiorxfe® and
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FIG. 3. Thek,,ax dependence of the Dirac-sea contributions to

e(T=0)(x) based on the occupied representation Xor0 and the FIG. 5. The final theoretical predictions of the CQSM for
nonoccupied representation for0. The solid curve represents the €T=9(x). The dot-dashed curve represents the contributioN of
extrapolated result. valence level quarks, the dashed curve the nonsingular part of the

Dirac-sea contributions, and the solid curve their sum. The

the nonoccupied representation fo0. One finds that the o-function singularity atx=0 in the Dirac-sea-quark part is not
shown in this figure.

large and positive Gaussian peak, the reminiscence of the

o-function singularity in the bare distribution, dqes not aP"se of the Fourier and its inverse transforms, we obtain the
pear anymore. One can also see that the negative large COKal prediction for the distributione™=9(x) within the

tributions oihthe Dtlr?fc seain :he smgxllreglon tew o de'— framework of the CQSM, the normalization point of which
crease as the cutoff momentuky,,, increases. We again may be interpreted as about 600 MeV.

][_er_rtmve _thtsv_ene_rgy wtoﬁbby numencald(_af)r(trapolat:con totr:n- Summarizing our analysis up to this point, the isosinglet
INity poINtWISE N X. We 0bSErve Some difterence from e .4 ot the chiral-odd twist-3 distribution is given as a sum of

previous case, hQW(_aver. Owing to the_ feature that they,, valence-quark and Dirac-sea-quark contributions,
S-function singularity is already excluded in the present way

of cglculation, _thekmax depen_dence is \_/veII_ reproduced_by e(T:O)(X)zegTaI:O)(X)Jreg:O)(X), (55)

the linear function of X,,,4as illustrated in Fig. 4. After this

extrapolation procedure, the result shows a smooth behavievhere the Dirac-sea contribution consists of the singular
in the whole region ok except the regiofx|<0.06 in which  term and the nonsinguldregula) term as

the answer is thought to contain some numerical instability (T=0) (T=0)

generated by the extrapolation method. Neglecting the data €sea (X)=C8(X)+ereq (X). (56)

in the |x|<0.06 region, we make this extrapolated result

smooth. After deconvoluting the smeared distribution with Shown in Fig. 5 are the final theoretical predictions for

e(T=0)(x) obtained in the above-explained way. The dashed
curve here represents the contributionNf valence level
quarks, while the dotted curve does the regular part of Dirac-
sea contribution. The sum of these two contributions is
shown by the solid curvgWe recall that the5(x)-type sin-
gular term is not shown in this figujeOne can convince
oneself that the regular part of the Dirac-sea contribution
shows a nontrivial structure in the#0 region.

After performing the numerical integration of the above
distributions overx, one can obtain the contributions of the
valence quark term and the regular part of the Dirac-sea term
to the first-moment sum rule:

0.0 T T T T

K.ox dependence of e(x) at x = 0.12

1
fﬁlegfo)(x)dlej, (57)
-05 ! 2 ! ! 1 (T=0)
0 0.01 0.02 0.03 0.04 0.05 €reg (X)dx=0.18. (59
1/ Ky, -1
FIG. 4. Theky,y dependence o&{l;”(x) atx=0.12 and its  Note that the regular part cﬂ(sz,zo)(x) gives a small but
linear extrapolation t&m 4x— . nonzero contribution to the sum rule. To determine the coef-
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ficient of the singular term in Eq(56), we use the first- which is obviously double counting the valence quark con-
moment sum rulé28) or (29) for e("=%(x), which was al- tribution to the first-moment sum rule. From a practical
ready shown to hold within the framework of the CQSM. We viewpoint, this double counting is not so serious, since the
first recall that the RHS of the sum ru(@8) or (29) is the 4, term turns out to be an order of magnitude smaller than

nucleon scalar charge defined by Ocea. This dominance of the Dirac-sea contribution to the
— — nucleon scalar charge is one of the distinguishing features of
o =(Nlyuthut digtcl N).- 59 the CQSM. One can say that it is connected with the unique

The point is that this low-energy observable can be Ca|cufeature of this model, which is able to describe simulta-

lated within the CQSM, without asking for the distribution N€ously a localized baryonic excitation together with the
function e(T=9)(x). It is given as nontrivial QCD vacuum structure with nonzero quark con-

densate(or nonzero scalar quark dengityn any case, we
emphasize that the CQSM predicts a fairly large scalar

_ charge for the nucleon: i.eg=11.8. Using the current
with guark mass ofmy=>5 MeV as an estimate, this gives

0=0ya 1t Osea; (60)

7,a1=Nc(0]7°0), (61) S \=Meo=60 MeV, (68)

- _ 0 which seems to favor relatively large values obtained from a
Tsea” NCnZO (nly"In). 62 recent analysis of the pion—):luclgon scattering amplitude
[39-43.
Numerically, we find that Next we turn to the discussion of the second-moment sum
_ _ rule. We first point out that thé(x) term ine(T=9(x) does
Tpa=1.7, 0s~10.1, (63 not contribute to the second moment. In the CQSM, then, the
second moment af{"=%)(x) receives contributions from two
terms in the distribution: i.e., the valence-quark term

=0 T 11.8 64 ell;9(x) and the regular part of the vacuum polarization
va sea L

term e, ¥(x). After performing the numerical integration,
Then, by admitting the validity of the first-moment sum rule, we find that

one can extract the coefficient of ti#¢x) term as follows:

so that

1
_ 1 J xelTT9(x)dx=0.23, (69)
C=0geq— J eleg V(x)dx=9.92. (65) -1

-1

1 1
Our procedure for obtaining the coefficie@t is different f xegzo)(x)dx=f xellsV(x)dx=—0.05.  (70)
from that of Schweitzef20]. After some consideration based -1 -1
on the gradient expansion analysis, he assumed that t
Dirac-sea contribution te("=%)(x) is saturated by thé(x)
term with the coefficienk . /mg, and simply neglected the fl

hﬁ1e total second moment is therefore given by

possible existence of the nonsingular contribution. In his
treatment, then, the nontrivial shape &f =% (x) at x#0

solely comes from the contribution dfl, valence level o . )
quarks. Thus, the total distribution consists of these two/Vé recall that, within the CQSM, there is another indepen-
dent method for evaluating the second moment. Since we are

xe(T=9(x)dx=0.23—-0.05=0.18. (71)
1

terms as e Vet g _
working in the chiral limit, we rewrite Eq(34), by setting
T-0) N my=0, as
eT=0(x) =~ 5(x) + €,ai(X). (66)
o 1 M
(T=0) =N.—
(Here for simplicity, we ignore the term proportional to the f_lxe (x)dx=Ne MN'B (72
product ofmg and the unpolarized distribution functigrn
our opinion, this procedure has a danger of double countingor
Within the framework of the CQSM, the totatN sigma
term divided by the current quark m is nothing but the ! - M
T AR e e | el 200 dx =N B (73)
total scalar charge of the nucleon, which is made up of the -1 My
two termso,, and ose.,. The X integral of Eq.(66) would
then lead to 1 _ M
f Xeglt;aO)(X)dX: NCM_ngsea’ (74)
) L B _
f e(T=O)(X)dX:(UUa|+Usea)—’_o-val ’ (67) .
-1 with
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1 1.0
Boai=(0|5(U+UN)0), (75)
total
—-—-- valence
1 e e Dirac-sea
Bea= 2 (n|5(U+U")]n). (76) 05
n<o0
These quantitie3,, and Bse4 Can be calculated directly .
within the model, without invoking the corresponding distri- 0.0 ez %
bution functions. Numerically, we find that T~
M
NCM_:BvaIZO'Z:g’ (77)
N -05 : .
~1.0 -0.5 0.0 0.5 1.0
M X
'\IC|\/|_I\Iﬁset’=l= —0.06. (78) FIG. 6. The theoretical predictions of the CQSM &F=1)(x).

The dot-dashed curve stands for the contributionNgf valence

These two numbers are consistent with the Correspondinﬁ"a quark_s, the da_shed curve the contribqtion of the Dirac-sea
numbers in Eqs(69) and (70), obtained through the distri- duarks, while the solid curves represents their sum.

bution functions. A small discrepancy between the numbers ) ) )

in Egs.(70) and(78) may be interpreted as giving a measureduarks bound in the sohton(ﬁag):kground at least in the
of numerical errors introduced by the very delicate interpo-S€cond-moment sum rule & ~7(x). Numerically, we
lation method for obtaining the vacuum polarization term ofhave
e(T=0)(x). At any rate, we find that the CQSM predicts a
relatively small but nonzero value for the second moment of

T=0)(x). Si ing | iral limi j | . .
e 7(x). Since we are working in the chiral imit"l,  Thjs yalye is smaller than the one obtained26], since the

=0), this appears to contradict the corresponding sum rulg,hiption of the Dirac-sea quarks neglecteda] works
(27) derived on the basis of the QCD equations of MOtioN, ' raduce the value 8.

which states that the second momente6f~?)(x) vanishes In any case, the nonzero value of the second moment of
in the chiral limit. Does this discrepancy simply mean thee(T=0)(X) is not contradictory at least within the framework

limitation of the CQSM as an effective theory of QCD? In ¢ yhe ' cOSM in which massless quarks are nowhere at the
our opinion, this is not necessarily the case by the following, J4q| energy scale of about 600 MeV. However, we antici-

reasons. First OII all, we point out thar: mgml,ent sum ruleg,qre that the dynamical quark magsis generally a scale-
containing quark masses are somewhat delicate, since tgpendent quantity which approaches zero in the high-

masses are generally dependent on the renormalization sc ergy limit. The naive QCD sum rule for the second
Second, if the QCD vacuum breaks the chiral symmetry

| . Iv believed " 1S moment ofe(™=%(x) would be recovered in this limit. To
spontaneously as Is generally believed, a quark acquires g q, the validity of this idea, what is crucial is experimental

dynamical mass of several hundred MeV, which means thayetermination of the second-moment sum rule at the rela-

massless quarks are nowhere. Naturally, the situation is n(N\/er low-energy scale close to the above-mentioned model

so simple because of the color confinement. For instanc%ner scale. This mav be in princinle possible by inversel
according to the picture of the MIT bag model, which real'evoIL?t)i/ng high-energy }(;ata to II)ow-eI;ergy scale. y y
izes quark confinement by hand, at least the vacuum inside

the bag is perturbative and the quarks inside it remains mass-
less. According to Shuryald4], the bag model is based on
the idea that the hadron is a piece of a qualitatively different In the case of the isovector distributi@®=)(x), no ul-

(or “perturbative”) phase of the QCD vacuum. The physical traviolet regularization is needed because its first moment
picture of the CQSM for the baryon and the QCD vacuum is(50) is related to the imaginary part of the Euclidian effective
fairly different from that of the bag model. According to the meson action in the background soliton fi¢#b] and it is
words of Shuryak again, the chiral modeiscluding the ultraviolet finite. We have checked that the energy level sum
CQSM assume that the vacuum is only slightly modified (43) is stable enough against an increase of the cutoff mo-
inside the hadron: the relative orientation of the right- andmentumk,,,,, above 1&1. The final result for the isovector
left-handed quark fields is somewhat different. This lastdistributione!™=)(x) is shown in Fig. 6.

statement denotes the fact that, in the basic Lagrangian of the The dashed curve represents the contribution ofNhe
CQSM, the dynamical quark mass paramdéfeappears as a valence level quarks, and the dot-dashed curve represents the
product with the chiral fieldJ5(x), which is space-time contribution of the Dirac-sea quarks, while the solid curve
dependent. It is also the cause of the fact that the product akpresents their sum. In contrast to the isosinglet distribution,
M and B enters the RHS of the second-moment sum ruleghe Dirac-sea contribution has no singularitkatO and it is

(34). This supports Schweitzer’s viewpoif20] that the a smooth function in the whole region »f The total contri-
quantity BM can be interpreted as an effective mass ofbution is given by the solid curve.

BM~51 MeV. (79

B. Isovector distribution eT=Y(x)
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not appear in inclusive DIS cross sections. To extract any
information for it, we must therefore carry out more specific

semi-inclusive-type scattering experiments. Very recently,
such an experiment has in fact been done by the CLAS Col-
1 laboration[23]. They measured the azimuthal asymmetry

A,y in electroproduction of pions from deeply inelastic scat-

terings of longitudinally polarized electrons off unpolarized

1 protons.

The first theoretical analysis of the CLAS data was car-
ried out by Efremovet al. [29,30. Their analysis assumes
that the beam single-spin asymmetry measured by the CLAS
group is dominantly generated by the so-called Collins

mechanisnj46]. Under this assumption together with a par-
'1'0_1_0 _6_5 0.0 05 1.0 ticular parametrization for the Collins fragmentation func-
X tion, they were able to extract the first information on the
chiral-odd twist-3 distribution functiom(x). Recently, this
analysis was criticized by Yudd7]. According to him, there
may be another mechanism which competes with the Collins
mechanism [48,49. It is the leading-order transverse-
momentum-dependent parton distributibp(x,k, ) convo-

1 luted with chiral-odd fragmentation functice(z). After all,
j e(T=1(x)dx=0.28, (80) the fact is that we still have poor knowledge about the
1 mechanism that generates the beam single-spin asymmetry in
which is order of magnitude consistent with the estimatesemi-inclusive deep-inelastic scatterings. We must under-
obtained from the analysis of the nonelectromagnetic protonstand the mechanism of parton fragmentation processes into
neutron mass difference. Shown in Fig. 7 are a comparisohadrons, especially the physics of time-reversal-odd frag-
of our final theoretical predictions for(™=%(x) and mentation functiond46,50. We must also clarify the dy-
e(T:”(x). One confirms that the magnitude @(szl)(X) is namics of transverse-momentum-dependent parton distribu-
much smaller than that af™=%)(x) in conformity with the tion functions in combination with the physics of chiral-odd
largeN,. relation(11). Combining these two distributions, we fragmentation functionf48-50. A truly reliable extraction
can now give final theoretical predictions for the chiral-oddof the chiral-odd twist-3 distribution functioe(x), which is
twist-3 distribution functiore®(x) of each flavo. Shown in  of our primary concern here, can be achieved only after a

Fig. 8(a) are the distributions for the quark anquuark, more complete understanding of the above-mentioned

L . o mechanisms of semi-inclusive DIS processes.
while Fig. 8b) gives the distributions for thd quark andd Keeping this fact in mind, we sh%ll proceed here by as-

1.0

0.0

FIG. 7. The comparison of the theoretical predictions for
e(T=0)(x) ande(T=Y(x) at the model energy scale.

The first moment or th& integral of this total contribution
gives the value

quark. suming dominance of the Collins mechanism. Under this as-
sumption, the asymmetry measured by the CLAS experiment
C. Comparison with empirical information from the CLAS is interpreted to be proportional to
measurements
Here we make a very preliminary comparison of our the- ; 4ma’s —
oretical predictions foe(x) with empirical information ex- AEIG¢~_ 4 N2y 1_y§a: egxzea(x)Hia(z),
tracted from high-energy semi-inclusive scatterings. Because Q 81)
of its chiral-odd nature, the distribution functie@f{x) does ) ) ) i
with y=(P-q)/(P-1),z=(P-py)/(P-q) andsis the invari-
(@ ®) ant mass squared of the photon-hadron system in the notation
3.0 T 20 T of [29]. A, denotes the beam helicity. The chiral-afadd

twist-2 “Collins” fragmentation functionH;?(z) gives the
probability of a spinless or unpolarized hadron to be created
from a transversely polarized scattered quark. Using infor-
mation onH1?(z) from HERMES dat424,25, one can then

. get direct information on the distribution functioe(x)
[29,30. In the CLAS experiment, the azimuthal asymmetries

8'(x)

2o | |15
10 P
10} ]

05t

0.0

0.0 ASN? for the processep—e’ 7" X were measured af?
10 L 05 L ~1.5 Ge\,. Under_ the dominant—flavor-on_ly approximation
00 02 04 06 08 10 00 02 04 06 08 10 for the fragmentation functions, the semi-inclusiwé pro-
X X duction measures the following combination of distributions:

__FIG. 8. The theoretical predictions fet'(x), ed(x), ea(x), and

1 _
U(x)+ 5 e%(x). 82
ed(x) at the model energy scale. ') 4e () (82)
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6.0 T parable energy scale @°=1 Ge\ is in qualitative agree-
ment with the extracted(x) from the CLAS data if30]. In
. our opinion, this agreement should be taken as fortuitous for
the following reason. First, as already pointed out, the isos-
inglet scalar charge of the nucleon predicted by the MIT bag
model is only about 15% of the value expected from the
phenomenological knowledge of theN sigma term. The
] fact is that the nucleon isoscalar charge is a quantity of order
1 (or orderN., more preciselyin the MIT bag model or in
_ any other model which contains three valence-quark degrees
of freedom only. The situation is totally different in the
CQSM. Although the contribution of thdl, valance level
quarks is of the same order as that of the MIT bag model, the
vacuum polarization effect or the contribution of the Dirac-
0.0 10'_1 T0° sea quarks gives a nearly 7-times-larger contribution as com-
X pared with that of the valence quarks, thereby reproducing
B the correct magnitude of the nucleon scalar charge ofrtiie
FIG. 9. The theoretical prediction fa(x)=e'(x)+3e(x) in  sigma term. Unfortunately, this crucial difference between
comparison with the corresponding empirical information extractedhe two models is not reflected in the observable distribution
from the CLAS data a{Q?® =1.5 Ge\? under the assumption of functione(x). Since the Dirac-sea contribution in the CQSM
Collins mechanism dominance. is nearly saturated by thé-function singularity, it happens
that the distributiong(x) atx+ 0 predicted by the two mod-
In Fig. 9, we make a comparison between the predictions ofls are not extremely different from each other. This is the
the CQSM for the above combinations of the distributionsfeason why the naive MIT bag model, which fails to explain
and the corresponding empirical information extracted fromthe magnitude of therN sigma term, can reproduce the em-
the CLAS data by Efremoet al.[29,30 under the assump- Ppirical distributione(x) extracted from the CLAS data at

tion of Collins mechanism dominance. The theoretical distrileast qualitatively. o
bution here Corresponds to an energy scale @? Still, we will show that there are some qualltatlve and

=1.5 Ge\. The scale dependence of the distribution isobservable differences between the predictions of the CQSM
taken into account by solving the leading-order DGLAP-typeand MIT bag model. The key observation here is that, for the

equation obtained in the lardés limit [35]. (The starting SPin-independent chiral-odd twist-3 distribution functions,
energy scale of this evolution is taken to b@2, the MIT bag model predicts no flavor dependence. That is,

~0.30 Ge\2.) The distribution e“(x)+ Le(x) extracted within the framework of the naive MIT bag model, we have

from the CLAS data contains large errors mainly due to the Wos  d TN 4
large uncertainties ofH;(z) from the HERMES data e =e0x),  ef(x)=el(x), (83
[24,29. still, it was emphasized i[29,3(] that the extracted or, more specifically,
distribution is definitely larger than the “twist-3 bound” and
about 2 times smaller than the corresponding unpolarized
distributionf$(x) at the same energy scale. One sees that our
theoretical prediction for'(x)+ 2ed(x) is in fairly good
agreement with the extracted behavior from the CLAS dataSuch equalities can be expected to hold only in the fictitious
The relatively small magnitude of the extracte(k) indi-  limit of Nc.—. As is in fact the case with the CQSM, for a
cates that there must be a significant contribution tosthe ~ finite value of N, the isovector distributione(™)(x)
sigma-term sum rule from the smallregion. Whether thisis = €"(x) —€%(x) does not vanish, so that we definitely expect
due to the indicated-function singularity ine(x) oritis due  that
to yet-unresolved Regge behavior in the snxallegion is 1 - 1 -
difficult to judge at the present stage of study. It is highly e’(x)+ —ed(x) #ed(x)+ = e(x). (85)
desirable to extend the region of measurements to a smaller- 4 4
x region. This is important, because unambiguous establistyjg,re 10 shows the comparison of the predictions of the two
ment of the violation of therN sigma-term sum rule would models for the distributionse’( )+leg( ) and ed(x)
indirectly prove the existence of a nov&ffunction singular- L Istributi X)Taex X
ity in the distribution functiore(x) of the nucleon, whichin *4€ (ZX) evolved to the energy scale of CLAS experiment:
turn may be interpreted as a manifestation of the nontriviai-6-»Q”=1.5 GeV from the initial energy scale of the model
structure of QCD vacuum in an observable of a localizedini=0.30 GeV?. The solid and dashed curves here stand
QCD excitation: i.e., the nucleon. for the predictions of the CQSM, respectively, fef(x)
Finally, we want to make some comments on the predic+ 3e%(x) and e(x)+:e"(x). On the other hand, the dot-
tion for e(x) based on the MIT bag model. As mentioned in dashed curve represents the prediction of the MIT bag
[30], the bag model prediction ¢28] evolved to the com- model, which gives an identical answer for both these com-

CQsMm
5.0

4.0

3.0

2.0

1.0

T S U PN Sry
e (x)+Ze (x)=¢€ (x)+Ze (x). (84)
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support forx+0. The isovector distributiore’(x) —e(x)
. i also consists of the valence and Dirac-sea contributions. For
6.0 & e{x) +(1/4)e(x) : CQSM _ 1 X L. . . . .
N 60 + (14) 6x) : CQSM = ——— f[hls dlstr|but|0n,_however, no de_Ita_l-functlon-type smgulgrlty
\. is observed, which means that it is a regular function in all
MIT bag model ~ —-—-— the range ok.

The moment sum rules @(x) provide us with valuable
information concerning the basic dynamical content of the
model in view of the underlying theory: i.e., QCD. We
showed that the first-moment sum rule ft(x)+e%(x) is
satisfied within the model if and only if the delta-function
singularity is properly taken into account. Note however that
the delta-function term alone does not saturate the first mo-
ment or thewN sigma-term sum rule in contrast to the pre-

10° vious argument based on the framework of the perturbative
X QCD. We also pointed out that the second-moment sum rule
— for e¥(x)+e’(x) does not vanish even in the chiral limit in

FIG. 10. The predictions of the CQSM fet'(x) +(1/4)e’(x)  contrast to the QCD equation-of-motion argument. In our
ande¥(x) + (1/4)e"(x) evolved to the energy sca@?=1.5 Ge\*  opinion, this violation of the second-moment sum rule does
of the CLAS data from the initial scale of the mod@?, not necessarily show a defect of the model. It is rather to be
=0.30 Ge\. Also shown for comparison is the prediction of the interpreted as showing the limitation of the perturbative
MIT bag model evolved to the same scale from somewhat loweanalysis as a tool of handling a bound-state problem and/or
energy scale oQf,=0.16 Ge\V. the problem of masses nonperturbatively generated by the

mechanism of the spontaneous chiral symmetry breaking.
binations of distributions. One sees that the CQSM predicts @/e have also shown that the model prediction for the first
sizably large difference between the two distributi@igx) ~ moment of the isovector distributioa’(x) —e(x) comes
+1e9(x) ande’(x)+31e"(x), in sharp contrast to the MIT out to be order of magnitude consistent with the phenomeno-
bag model. In principle, the possible differences of these twdogical estimate obtained from the nonelectromagnetic
distributions can be detected by performing a comparativeeutron-proton mass difference.

40

2.0

0.0

analysis of the semi-inclusive™ and 7° productions. It was shown that the theoretical predictions for the dis-
tribution e¥(x) + 2e(x) are in a good agreement with the
IV. SUMMARY AND CONCLUSION corresponding empirical information extracted from the

. : - CLAS data for the semi-inclusive® production under the
In summary, we have given theoretical predictions for the

. o et - assumption of the Collins mechanism dominance. This
\(/:vri]tlrzaleggﬁ tf\l’g\‘j‘;; %Iitrtlf?:tlt?;sif:ncfft?hee (é(gircz)afl thsawcslgﬁ{:) N agreement, combined with our analysis explained in the text,
) o quark so implies the existence of &-function singularity atx=0 in
model. A prominent feature of the isosinglet combination of

o . LT " “'the isosinglet distributior¥(x) +e%(x), although a definite

u d ]
the dlsFrlbutlons,e (x)+.('a (), IS that its first momgnt IS conclusion must await for more complete measurements and
proportional to the familiarrN sigma term and that it con-

. . . s . a more thorough understanding of the reaction mechanism
tains a delta-function singularity at=0. In the previous 9 g

o2 : . that generates the beam single-spin asymmetry in semi-
study based on the derivative expansion technique, we de”i}iclusgve pion production gle-sp y y

onstrated that the physical origin of this singularity can be Finally, we compare our theoretical predictions with those

traced back to the long-range quark-quark correlation of SC&5¢ the MIT bag model. As shown in the body of the paper,

lar type, which signals the spontaneous chiral symmetr ; : ‘o
breaking of the QCD vacuum. The present calculation, withE{he two models give accidentally close predictions for the

out recourse to the derivative-expansion-type approximatiorfistribution function e"(x) + i€9(x) at x#0. We have
has revealed the following facts. The isosinglet distribution>"OWn. however, that the CQSM predicts a sizably large dif-
e¥(x) +e%(x) consists of two parts: i.e., the contribution of ference between the two distributiom$(x) +ze(x) and

N, valence level quarks and that of the Dirac sea quarks ir(x) + 2e!(x), for which the MIT bag model makes no dif-
the hedgehog mean field. The former takes a familiar shaperence. The predicted sizable difference between the two
of distribution which has a peak around the value xof combinations of distributions will be detected by performing
=1/3. On the other hand, the latter certainly contains aa comparative experimental analysis of semi-inclusive
S-function-type singularity ak=0, but it also has nontrivial and° production.
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